Current Developments in Biotechnology and Bioengineering: Photobioreactors: Design and Applications

دانلود کتاب Current Developments in Biotechnology and Bioengineering: Photobioreactors: Design and Applications

49000 تومان موجود

کتاب تحولات کنونی در بیوتکنولوژی و مهندسی زیستی: فوتوبیوراکتورها: طراحی و کاربردها نسخه زبان اصلی

دانلود کتاب تحولات کنونی در بیوتکنولوژی و مهندسی زیستی: فوتوبیوراکتورها: طراحی و کاربردها بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 9


توضیحاتی در مورد کتاب Current Developments in Biotechnology and Bioengineering: Photobioreactors: Design and Applications

نام کتاب : Current Developments in Biotechnology and Bioengineering: Photobioreactors: Design and Applications
عنوان ترجمه شده به فارسی : تحولات کنونی در بیوتکنولوژی و مهندسی زیستی: فوتوبیوراکتورها: طراحی و کاربردها
سری :
نویسندگان : , , , ,
ناشر : Elsevier
سال نشر : 2023
تعداد صفحات : 320 [321]
ISBN (شابک) : 0323999115 , 9780323999113
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 15 Mb



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover    Contents Contributors Preface SECTION I - General & design considerations 1 - Photobioreactors: An introduction 1.1 Introduction 1.2 Types of photobioreactors 1.2.1 Tubular type photobioreactors 1.2.2 Flat panel photobioreactors 1.2.3 Column types photobioreactors 1.2.4 Soft frame photobioreactors 1.3 Factors affecting microalgae productivity in photobioreactors 1.4 Modeling and simulation of photobioreactors 1.5 Applications of photobioreactors 1.5.1 Photobioreactors for microalgae-based wastewater treatment 1.5.2 Cultivation of diatoms in photobioreactors 1.5.3 Cultivation of astaxanthin in photobioreactors 1.5.4 Production of biopolymers in photobioreactors 1.5.5 Production of biohydrogen in photobioreactors 1.6 Conclusions and perspectives References 2 - Design and scale-up of photobioreactors 2.1 Introduction 2.2 Microalgae cultivation scaling-up process 2.3 Photobioreactor (PBR) design and its scalability principles 2.3.1 Vertical tubular photobioreactors 2.3.1.1 Bubble column photobioreactors (BCPBRs) 2.3.1.2 Airlift photobioreactors (ALPBRs) 2.3.2 Flat panel photobioreactors (FTB/FPPBRs) 2.3.3 Horizontal tubular photobioreactors (HTPBRs) 2.3.4 Helical type photobioreactors (HPBRs) 2.3.5 Stirred tank photobioreactors (STPBRs) 2.3.6 Hybrid type photobioreactors 2.3.7 Flat-panel airlift photobioreactors (FPAPBRs) 2.3.8 Internally illuminated photobioreactors (IIPBRs) 2.3.9 Low-cost plastic bag photobioreactors 2.4 Challenges 2.5 Conclusions and perspectives References 3 - Types of photobioreactors 3.1 Introduction 3.2 Vertical column photobioreactors 3.2.1 Stirred tank photobioreactors (ST-PBRs) 3.2.2 Bubble column photobioreactors (BC-PBRs) 3.2.3 Airlift photobioreactors (A-PBRs) 3.3 Horizontal tubular photobioreactors (HT-PBRs) 3.3.1 General description 3.3.2 The mixing in HT-PBRs 3.3.3 Innovative HT-PBRs 3.3.4 Helical tubular photobioreactors 3.4 Flat plate photobioreactors (FP-PBRs) 3.4.1 General description 3.4.2 The mixing in FP-PBR 3.4.3 Innovative FP-PBRs 3.5 Flat panel-airlift photobioreactors (FPA-PBRs) 3.6 Plastic bag photobioreactors (PB-PBRs) 3.7 Taylor vortex photobioreactors (TV-PBRs) 3.8 Torus photobioreactors (T-PBRs) 3.9 Internally illuminated photobioreactor (II-PBRs) 3.10 Other innovative photobioreactors 3.11 Conclusions and perspectives References 4 - Factors affecting the microalgal biomass productivity in photobioreactors 4.1 Introduction 4.2 Factors influencing the general productivity in photobioreactors (PBR) 4.2.1 PBR design considerations 4.2.2 Light illumination and intensity 4.2.2.1 Light intensity 4.2.2.2 Light path 4.2.2.3 Light utilization 4.2.3 Effect of pH 4.2.4 Temperature 4.2.4.1 Temperature versus productivity 4.2.5 Microalgal strains 4.2.6 Trophic modes of cultivation 4.2.7 Operation modes of cultivation 4.2.8 Mixing, heat, and mass transfer 4.2.8.1 Mass transfer characteristics 4.3 Factors influencing the process scale-up 4.3.1 Engineering parameters 4.3.1.1 Light regime 4.3.1.2 Mixing rate 4.3.1.3 Hydrodynamic stress 4.3.1.4 Mass transfer 4.3.2 Operational parameters 4.3.2.1 Carbon and mineral nutrient requirements 4.3.2.2 pH control 4.3.2.3 Thermal regulation 4.4 Conclusions and perspectives Acknowledgment References 5 - Photobioreactors modeling and simulation 5.1 Introduction 5.2 Stoichiometry and kinetics of microalgal growth 5.2.1 Composition of microalgal biomass 5.2.2 Kinetics of microalgal growth 5.2.3 Kinetics of nutrient consumption 5.3 Photobioreactor modeling 5.3.1 Light supply 5.3.2 Temperature 5.3.3 Multiple factors 5.3.4 Medium pH 5.3.5 Dissolved inorganic carbon 5.4 Photobioreactor simulation 5.5 Conclusions and perspective Acknowledgements References 6 - Photobioreactors for microalgae-based wastewater treatment 6.1 Introduction 6.2 Phycoremediation potential of microalgae—assimilatory nutrients removal 6.3 Open systems for microalgae-based wastewater treatment 6.3.1 High rate algal ponds (HRAP) 6.3.2 Algal turf scrubbers 6.3.3 Advantages, disadvantages, and opportunities of open reactors for efficient and economic wastewater treatment 6.4 Closed photobioreactors for microalgae-based wastewater treatment 6.4.1 Vertical column, tubular and flat plate PBRs 6.4.2 Soft frame photobioreactors 6.4.3 Membrane photobioreactor (MPBR) 6.4.4 Algal biofilm-based photobioreactors 6.4.5 Bottlenecks in the application of closed PBRS for cost-effective wastewater treatment 6.5 Conclusions and perspectives References SECTION II - Applications of photobioreactors 7 - High-density microalgal biomass production in internally illuminated photobioreactors 7.1 Introduction 7.2 General rules for the design and operation of internally illuminated photobioreactor 7.2.1 Why internal illumination? 7.2.2 Technical trade-offs associated with internal illumination 7.2.3 Heuristic rules for internally illuminated photobioreactor 7.3 Design and demonstration of internally illuminated photobioreactors 7.3.1 Internally illuminated photobioreactor with a double-layered glass tube for thermal insulation 7.3.2 Adjusting light placement depth in internally illuminated cylindrical photobioreactor 7.3.3 Large-scale demonstration of internally illuminated photobioreactor 7.4 Opportunities for photobioreactor with internal illumination 7.5 Conclusions and perspectives Acknowledgements References 8 - The application of cyanobacteria in photobioreactors 8.1 Introduction 8.2 Cyanobacteria 8.3 Applications of cyanobacteria 8.3.1 Nutritional value 8.3.2 Medical value 8.3.3 Other values 8.4 Controlling cultivation of cyanobacteria 8.4.1 Light and temperature on cyanobacteria 8.4.2 Salinity and pH 8.4.3 Nutrient elements and carbon sources 8.5 Use of cyanobacteria in a photobioreactor 8.5.1 Open photobioreactor 8.5.2 Tube photobioreactor 8.5.2.1 Design of tube photobioreactors 8.5.3 Flat-plate photobioreactor 8.5.4.1 Design of flat-plate photoreactors 8.5.4 Columnar photobioreactor 8.5.4.1 Design of a columnar photobioreactor 8.6 Conclusions and perspectives Authors’ contributions References 9 - Cultivation of diatoms in photobioreactors 9.1 Introduction 9.2 Physiological and biotechnological advantages of diatoms 9.3 Growing diatom in large-scale culture systems 9.4 Selection of bioreactors and their design 9.5 Factors influencing diatom productivity in PBR systems 9.5.1 Light 9.5.2 Temperature and pH 9.5.3 Nutrient requirements 9.5.4 Trophic mode 9.6 Conclusions and perspectives References 10 - Photobioreactor systems for production of astaxanthin from microalgae 10.1 Introduction 10.2 Photobioreactor (PBR) systems 10.2.1 Vertical tubular PBR 10.2.1.1 Bubble column PBR 10.2.1.2 Airlift PBR 10.2.2 Horizontal tubular PBR 10.2.3 Stirred tank PBR 10.2.4 Energy-free rotating floating PBR (RF-PBR) 10.2.5 Flat panel airlift PBRs (FP-ALPBR) 10.2.6 Hybrid usage of PBR 10.3 Conclusions and perspectives Acknowledgements References 11 - Production of biopolymers in photobioreactors 11.1 Introduction 11.2 Biopolymers from microalgae 11.2.1 Poly (hydroxyalkanoates) 11.2.2 Proteins 11.2.3 Polysaccharides 11.3 Upstream and downstream factors that maximize microalgal biopolymer production 11.3.1 Nitrogen source 11.3.2 Light intensity and temperature 11.3.3 Modes of obtaining energy 11.3.4 Extraction methods 11.4 Photobioreactors used to produce biopolymers 11.4.1 Biopolymer production from microalgae 11.5 Conclusions and perspectives Acknowledgements References 12 - Production of biohydrogen in photobioreactors 12.1 Introduction 12.2 Biohydrogen production in photobioreactor 12.2.1 Role of photobioreactor in biohydrogen production 12.2.2 Key factors of photobioreactor affecting biohydrogen production 12.2.3 Light-heat-mass transfer mechanisms in photobioreactor 12.3 Operation parameters of photobioreactor in the biohydrogen production process 12.3.1 Raw material type 12.3.2 Initial pH 12.3.3 Substrate concentration 12.3.4 Mixing methods 12.3.5 Temperature 12.3.6 Lighting patterns 12.3.7 Operation modes 12.4 Light-heat-mass transfer properties of photobioreactor during biohydrogen production process 12.4.1 Light transfer properties 12.4.2 Heat distribution 12.4.3 Metabolism of substrate and electron transfer 12.5 Cases of typical photobioreactors adopted in biohydrogen production process 12.5.1 Tubular photobioreactor 12.5.2 Circulating tank photobioreactor 12.5.3 Solar energy-based 5 m³ baffle photobioreactor 12.5.4 Combined photo and dark fermentation mode 11 m³ baffle photobioreactor 12.6 Conclusions and perspectives Acknowledgements References Index




پست ها تصادفی