Data Assimilation: The Ensemble Kalman Filter

دانلود کتاب Data Assimilation: The Ensemble Kalman Filter

58000 تومان موجود

کتاب همسان سازی داده ها: فیلتر مجموعه کالمن نسخه زبان اصلی

دانلود کتاب همسان سازی داده ها: فیلتر مجموعه کالمن بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 7


توضیحاتی در مورد کتاب Data Assimilation: The Ensemble Kalman Filter

نام کتاب : Data Assimilation: The Ensemble Kalman Filter
ویرایش : 2
عنوان ترجمه شده به فارسی : همسان سازی داده ها: فیلتر مجموعه کالمن
سری :
نویسندگان :
ناشر : Springer-Verlag Berlin Heidelberg
سال نشر : 2009
تعداد صفحات : 314
ISBN (شابک) : 9783642037108 , 3642037100
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 10 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.

توضیحاتی در مورد کتاب :




Adta Assimilation به طور جامع شبیه سازی داده ها و روش های معکوس، از جمله تخمین حالت سنتی و تخمین پارامتر را پوشش می دهد. این متن و مرجع بر روی روش‌های مختلف شبیه‌سازی داده‌ها، مانند روش‌های تغییر محدودیت‌های ضعیف و قوی و فیلترها و صاف‌کننده‌ها تمرکز دارد. با استفاده از چندین مثال نشان داده می‌شود که چگونه روش‌های مختلف را می‌توان از یک مبنای نظری مشترک استخراج کرد، و همچنین چگونه آنها متفاوت هستند و/یا با یکدیگر مرتبط هستند، و کدام ویژگی‌ها آنها را مشخص می‌کند.

این ارائه می‌دهد. چارچوب ریاضی و مشتقات به روشی که برای هر رشته ای که دینامیک با اندازه گیری ها ادغام می شود رایج است. سطح ریاضیات متوسط ​​است، اگرچه نیاز به دانش آمار فضایی پایه، آمار بیزی و حساب تغییرات دارد. خوانندگان همچنین از معرفی روش های ریاضی استفاده شده و مشتقات دقیق، که باید به راحتی دنبال شوند، در سراسر کتاب آورده شده است. کدهای مورد استفاده در چندین آزمایش شبیه‌سازی داده‌ها در یک صفحه وب در دسترس هستند.

تمرکز روی روش‌های مجموعه، مانند فیلتر کلمن و نرم‌تر، همچنین آن را به یک مرجع قوی برای استخراج، پیاده‌سازی تبدیل می‌کند. و کاربرد چنین تکنیک هایی بسیاری از مطالب جدید، به ویژه مربوط به فرمول‌بندی و حل مسائل ترکیبی پارامترها و برآورد حالت و ویژگی‌های کلی الگوریتم‌های مجموعه، برای اولین بار در اینجا در دسترس هستند.

ویرایش دوم شامل بازنویسی جزئی است. از فصول 13 و 14 و پیوست. علاوه بر این، یک فصل کاملاً جدید در مورد "همبستگی های جعلی، بومی سازی و تورم" و یک بحث نمونه گیری به روز شده و بهبود یافته در فصل 11 وجود دارد.


فهرست مطالب :


Front Matter....Pages i-xix
Introduction....Pages 1-4
Statistical definitions....Pages 5-12
Analysis scheme....Pages 13-25
Sequential data assimilation....Pages 27-45
Variational inverse problems....Pages 47-69
Nonlinear variational inverse problems....Pages 71-93
Probabilistic formulation....Pages 95-101
Generalized Inverse....Pages 103-117
Ensemble methods....Pages 119-137
Statistical optimization....Pages 139-155
Sampling strategies for the EnKF....Pages 157-176
Model errors....Pages 177-196
Square Root Analysis schemes....Pages 197-209
Rank issues....Pages 211-236
Spurious correlations, localization, and inflation....Pages 237-253
An ocean prediction system....Pages 255-261
Estimation in an oil reservoir simulator....Pages 263-272
Back Matter....Pages 1-33

توضیحاتی در مورد کتاب به زبان اصلی :


Data Assimilation comprehensively covers data assimilation and inverse methods, including both traditional state estimation and parameter estimation. This text and reference focuses on various popular data assimilation methods, such as weak and strong constraint variational methods and ensemble filters and smoothers. It is demonstrated how the different methods can be derived from a common theoretical basis, as well as how they differ and/or are related to each other, and which properties characterize them, using several examples.

It presents the mathematical framework and derivations in a way which is common for any discipline where dynamics is merged with measurements. The mathematics level is modest, although it requires knowledge of basic spatial statistics, Bayesian statistics, and calculus of variations. Readers will also appreciate the introduction to the mathematical methods used and detailed derivations, which should be easy to follow, are given throughout the book. The codes used in several of the data assimilation experiments are available on a web page.

The focus on ensemble methods, such as the ensemble Kalman filter and smoother, also makes it a solid reference to the derivation, implementation and application of such techniques. Much new material, in particular related to the formulation and solution of combined parameter and state estimation problems and the general properties of the ensemble algorithms, is available here for the first time.

The 2nd edition includes a partial rewrite of Chapters 13 an 14, and the Appendix. In addition, there is a completely new Chapter on "Spurious correlations, localization and inflation", and an updated and improved sampling discussion in Chap 11.




پست ها تصادفی