Data-Driven Computational Neuroscience: Machine Learning and Statistical Models

دانلود کتاب Data-Driven Computational Neuroscience: Machine Learning and Statistical Models

39000 تومان موجود

کتاب علوم اعصاب محاسباتی داده محور: یادگیری ماشین و مدل های آماری نسخه زبان اصلی

دانلود کتاب علوم اعصاب محاسباتی داده محور: یادگیری ماشین و مدل های آماری بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 5


توضیحاتی در مورد کتاب Data-Driven Computational Neuroscience: Machine Learning and Statistical Models

نام کتاب : Data-Driven Computational Neuroscience: Machine Learning and Statistical Models
عنوان ترجمه شده به فارسی : علوم اعصاب محاسباتی داده محور: یادگیری ماشین و مدل های آماری
سری :
نویسندگان : ,
ناشر : Cambridge University Press
سال نشر : 2020
تعداد صفحات : 757
ISBN (شابک) : 110849370X , 9781108493703
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 35 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Copyright
Contents
Preface
List of Acronyms
Part I Introduction
1 Computational Neuroscience
1.1 The Multilevel Organization of the Brain
1.2 The Human Brain
1.3 Brain Research Initiatives
1.4 Neurotechnologies
1.5 Data-Driven Computational Neuroscience
1.6 Real Examples Discussed in This Book
Part II Statistics
2 Exploratory Data Analysis
2.1 Data Types
2.2 Univariate Data
2.3 Bivariate Data
2.4 Multivariate Data
2.5 Imputation of Missing Data
2.6 Variable Transformation
2.7 Bibliographic Notes
3 Probability Theory and Random Variables
3.1 Probability Theory
3.2 Univariate Discrete Distributions
3.3 Univariate Continuous Distributions
3.4 Multivariate Probability Distributions
3.5 Simulating Random Variates
3.6 Information Theory
3.7 Bibliographic Notes
4 Probabilistic Inference
4.1 Parameter Estimation
4.2 Hypothesis Tests
4.3 Bibliographic Notes
Part III Supervised Classification
5 Performance Evaluation
5.1 The Learning Problem
5.2 Performance Measures
5.3 Performance Estimation
5.4 Statistical Significance Testing
5.5 Imbalanced Data Sets and Anomaly Detection
5.6 Bibliographic Notes
6 Feature Subset Selection
6.1 Overview of Feature Subset Selection
6.2 Filter Approaches
6.3 Wrapper Methods
6.4 Embedded Methods
6.5 Hybrid Feature Selection
6.6 Feature Selection Stability
6.7 Example: GABAergic Interneuron Nomenclature
6.8 Bibliographic Notes
7 Non-probabilistic Classifiers
7.1 Nearest Neighbors
7.2 Classification Trees
7.3 Rule Induction
7.4 Artificial Neural Networks
7.5 Support Vector Machines
7.6 Bibliographic Notes
8 Probabilistic Classifiers
8.1 Bayes Decision Rule
8.2 Discriminant Analysis
8.3 Logistic Regression
8.4 Bayesian Network Classifiers
8.5 Bibliographic Notes
9 Metaclassifiers
9.1 Main Ideas on Metaclassifiers
9.2 Combining the Outputs of Different Classifiers
9.3 Popular Metaclassifiers
9.4 Example: Interneurons versus Pyramidal Neurons
9.5 Example: Interneurons versus Pyramidal Neurons; Comparison of All Classifiers
9.6 Bibliographic Notes
10 Multidimensional Classifiers
10.1 Multi-label and Multidimensional Classification
10.2 Equivalent Notations for Multi-label Classification
10.3 Performance Evaluation Measures
10.4 Learning Methods
10.5 Example: Quality of Life in Parkinson’s Disease
10.6 Bibliographic Notes
Part IV Unsupervised Classification
11 Non-probabilistic Clustering
11.1 Similarity/Dissimilarity between Objects
11.2 Hierarchical Clustering
11.3 Partitional Clustering
11.4 Choice of the Number of Clusters
11.5 Subspace Clustering
11.6 Cluster Ensembles
11.7 Evaluation Criteria
11.8 Example: Dendritic Spines
11.9 Bibliographic Notes
12 Probabilistic Clustering
12.1 The Expectation-Maximization Algorithm
12.2 Finite-Mixture Models for Clustering
12.3 Clustering with Bayesian Networks
12.4 Example: Dendritic Spines
12.5 Bibliographic Notes
Part V Probabilistic Graphical Models
13 Bayesian Networks
13.1 Basics of Bayesian Networks
13.2 Inference in Bayesian Networks
13.3 Learning Bayesian Networks from Data
13.4 Dynamic Bayesian Networks
13.5 Example: Basal Dendritic Trees
13.6 Bibliographic Notes
14 Markov Networks
14.1 Definition and Basic Properties
14.2 Factorization of the Joint Probability Distribution
14.3 Inference in Markov Networks
14.4 Learning Continuous Markov Networks
14.5 Learning Discrete Markov Networks
14.6 Conditional Random Fields
14.7 Example: Functional Brain Connectivity of Alzheimer’s Disease
14.8 Bibliographic Notes
Part VI Spatial Statistics
15 Spatial Statistics
15.1 Basic Concepts of Spatial Point Processes
15.2 Complete Spatial Randomness
15.3 Goodness-of-Fit Tests via Simulation
15.4 Data Collection Issues
15.5 Common Models of Spatial Point Processes
15.6 Example: Spatial Location of Synapses in the Neocortex
15.7 Bibliographic Notes
Bibliography
Subject Index




پست ها تصادفی