توضیحاتی در مورد کتاب Data Science Solutions with Python: Fast and Scalable Models Using Keras, PySpark MLlib, H2O, XGBoost, and Scikit-Learn
نام کتاب : Data Science Solutions with Python: Fast and Scalable Models Using Keras, PySpark MLlib, H2O, XGBoost, and Scikit-Learn
ویرایش : 1
عنوان ترجمه شده به فارسی : راه حل های علم داده با پایتون: مدل های سریع و مقیاس پذیر با استفاده از Keras، PySpark MLlib، H2O، XGBoost، و Scikit-Learn
سری :
نویسندگان : Tshepo Chris Nokeri
ناشر : Apress
سال نشر : 2021
تعداد صفحات : 128
ISBN (شابک) : 1484277619 , 9781484277614
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 4 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Table of Contents
About the Author
About the Technical Reviewer
Acknowledgments
Introduction
Chapter 1: Exploring Machine Learning
Exploring Supervised Methods
Exploring Nonlinear Models
Exploring Ensemble Methods
Exploring Unsupervised Methods
Exploring Cluster Methods
Exploring Dimension Reduction
Exploring Deep Learning
Conclusion
Chapter 2: Big Data, Machine Learning, and Deep Learning Frameworks
Big Data
Big Data Features
Impact of Big Data on Business and People
Better Customer Relationships
Refined Product Development
Improved Decision-Making
Big Data Warehousing
Big Data ETL
Big Data Frameworks
Apache Spark
Resilient Distributed Data Sets
Spark Configuration
Spark Frameworks
SparkSQL
Spark Streaming
Spark MLlib
GraphX
ML Frameworks
Scikit-Learn
H2O
XGBoost
DL Frameworks
Keras
Chapter 3: Linear Modeling with Scikit-Learn, PySpark, and H2O
Exploring the Ordinary Least-Squares Method
Scikit-Learn in Action
PySpark in Action
H2O in Action
Conclusion
Chapter 4: Survival Analysis with PySpark and Lifelines
Exploring Survival Analysis
Exploring Cox Proportional Hazards Method
Lifeline in Action
Exploring the Accelerated Failure Time Method
PySpark in Action
Conclusion
Chapter 5: Nonlinear Modeling With Scikit-Learn, PySpark, and H2O
Exploring the Logistic Regression Method
Scikit-Learn in Action
PySpark in Action
H2O in Action
Conclusion
Chapter 6: Tree Modeling and Gradient Boosting with Scikit-Learn, XGBoost, PySpark, and H2O
Decision Trees
Preprocessing Features
Scikit-Learn in Action
Gradient Boosting
XGBoost in Action
PySpark in Action
H2O in Action
Conclusion
Chapter 7: Neural Networks with Scikit-Learn, Keras, and H2O
Exploring Deep Learning
Multilayer Perceptron Neural Network
Preprocessing Features
Scikit-Learn in Action
Keras in Action
Deep Belief Networks
H2O in Action
Conclusion
Chapter 8: Cluster Analysis with Scikit-Learn, PySpark, and H2O
Exploring the K-Means Method
Scikit-Learn in Action
PySpark in Action
H2O in Action
Conclusion
Chapter 9: Principal Component Analysis with Scikit-Learn, PySpark, and H2O
Exploring the Principal Component Method
Scikit-Learn in Action
PySpark in Action
H2O in Action
Conclusion
Chapter 10: Automating the Machine Learning Process with H2O
Exploring Automated Machine Learning
Preprocessing Features
H2O AutoML in Action
Conclusion
Index