توضیحاتی در مورد کتاب :
این کتاب موضوع علم داده را به صورت جامع پوشش میدهد و موضوعات اساسی و پیشرفته یک حوزه تحقیقاتی را که اکنون به بلوغ خود رسیده است، ترکیب میکند. کتاب با مفاهیم پایه علم داده شروع می شود. انواع دادهها و کاربرد و اهمیت آنها را برجسته میکند و سپس در مورد طیف وسیعی از کاربردهای علم داده و تکنیکهای پرکاربرد در علم داده بحث میکند.
ویژگیهای کلیدی< /span>
• مجموعه ای معتبر بین المللی از روش ها، فناوری ها و کاربردهای تحقیقات علمی در حوزه علم داده ارائه می دهد.
• ارائه می کند. نتایج پیشبینیکننده با استفاده از تکنیکهای علم داده در برنامههای کاربردی واقعی.
• ابزارها، تکنیکها و موارد مورد نیاز برای برتری با روشهای هوش مصنوعی مدرن را در اختیار خوانندگان قرار میدهد.
• برنامه های کاربردی هوشمند متنوعی را در اختیار خواننده قرار می دهد که می توانند با استفاده از علم داده و زمینه های مرتبط با آن طراحی شوند.
این کتاب در درجه اول هدف قرار گرفته است. در مقاطع کارشناسی و فارغ التحصیلان پیشرفته ای که در حال مطالعه یادگیری ماشین و علم داده هستند. محققان و متخصصان نیز این کتاب را مفید خواهند یافت.
فهرست مطالب :
Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface
Editors
Contributors
1. Instigation and Development of Data Science
1.1 Data Science
1.1.1 Existence of Data Science
1.1.2 Data Science Process
1.1.2.1 Setting the Research Goal
1.1.2.2 Retrieving Data
1.1.2.3 Data Preparation
1.1.2.4 Data Exploration
1.1.2.5 Data Modeling
1.1.2.6 Presentation and Automation
1.1.3 Life Cycle – Data Science
1.2 Relation between Data Science and Machine Learning
1.2.1 Where Do We See Machine Learning in Data Science?
1.2.2 Which Machine Algorithms are used in Data Science?
1.2.2.1 Linear Regression Algorithm
1.2.2.2 Decision Tree
1.2.2.3 K-Means Clustering
1.2.3 Application of Machine Learning in Data Science
1.3 Tools for Data science
1.3.1 R Programming
1.3.2 Python
1.4 Benefits and Applications
1.5 Conclusion
References
2. Role of Statistical Methods in Data Science
2.1 Introduction
2.2 Data Science and Statistics Terminologies
2.3 Types of Statistics
2.3.1 Descriptive
2.3.2 Inferential
2.4 How to Describe a Single Set of Data
2.5 Statistical Analysis
2.5.1 Quantitative Analysis
2.5.2 Qualitative Analysis
2.5.3 Measures of the Central Tendency
2.5.4 Measures of Dispersion
2.6 Tools to Measure Relationships
2.6.1 Covariance
2.6.2 Correlation
2.7 Probability Distribution Function
2.7.1 Cumulative Density Function
2.7.2 Continuous Data Distributions
2.7.3 Conditional Probability
2.7.4 Bayes’ Theorem
2.8 Hypothesis Testing
2.9 Conclusion
References
3. Real-World Applications of Data Science
3.1 Banking and Finance
3.1.1 Customer Data Management
3.1.2 Real-Time Analytics
3.1.3 Algorithmic Trading
3.1.4 Providing Personalized Services
3.1.5 Fraud Detection
3.2 E-commerce and Retail Industry
3.2.1 Potential Customer Analysis
3.2.2 Customer Sentiment Analysis
3.2.3 Optimizing Prices
3.2.4 Inventory Management
3.2.5 Lifetime Value Prediction
3.3 Digital Marketing
3.3.1 Smarter Planning for Online Marketing
3.3.2 Business Intelligence with Smarter Decision-Making
3.3.3 Managing Business Efficiently
3.3.4 Automating Recruitment Process
3.4 Healthcare and Medical Diagnosis
3.4.1 Managing and Monitoring Patient Health and Data
3.4.2 Medical Image Analysis
3.4.3 Drug Research and Creation
3.4.4 Patient Diagnosis and Preventing Diseases
3.4.5 Providing Medical Virtual Assistance
3.5 Manufacturing Industry
3.5.1 Automating Product Design and Development
3.5.2 Inventory Management and Demand Forecasting
3.5.3 Monitoring of Manufacturing Units
3.5.4 Real-Time Data of Performance and Quality
3.6 Education System
3.6.1 Monitoring Students’ and Teachers’ Requirements
3.6.2 Measuring Students’ and Teachers’ Performance
3.6.3 Innovating the Curriculum
3.6.4 Automating Outcome-Based Teaching and Learning Process
3.7 Entertainment Industry
3.7.1 Predictive Analytics in the Film Industry
3.7.2 Tracking Progress of Movies
3.7.3 Generate Movie Revenue
3.7.4 Improve Post-production of Movies
3.8 Logistic Delivery and Transportation Units
3.8.1 Reducing Shipping Costs through Delivery Path Optimization
3.8.2 Monitoring Traffic and Weather Data from Sensors
3.9 Shipping Sensitive Goods with Higher Quality
3.9.1 Automation of Warehouses and the Supply Chain
3.10 Digital Advertising Systems
3.10.1 Price Comparison Websites
3.10.2 Website Recommendation
3.11 Internet Search Engines
3.11.1 Proper Filtering
3.11.2 Autocomplete
3.11.3 Recommendation Engines
3.12 Airline Routing Planning
3.12.1 Predicting Flight Delays
3.12.2 Decide Route of Flight In Case of Emergency
3.12.3 Running Customer Loyalty Programs Effectively
3.13 Image and Speech Recognition Systems
3.13.1 Image Recognition Systems
3.13.2 Speech Recognition Systems
3.14 Gaming/Sports
3.14.1 Use Previous Gaming Experience to the Next Level
3.14.2 Improve Player Moves Up to Higher Level
3.15 Social Life and Social Networking
3.15.1 Building and Maintaining Social Relationship
3.15.2 Maintaining Friend Circles through Social Media
3.15.3 Building Human Network for Social Causes
3.16 Augmented Reality
3.16.1 Operation Room Augmented with Remote Presence
3.16.2 Social Media with Augmented Reality
3.17 Self-Driving Cars and Robots
3.17.1 Intelligent Systems for Self-Driving Cars
3.17.2 Robotics and Automation
3.18 Email Filtering and Character Recognitions
3.18.1 Email Spam Filtering
3.18.2 Optical Character Recognitions
3.19 Genetics and Genomics Research
3.19.1 Analyzing Impact of the DNA on the Health
3.19.2 Analyzing Reaction of Genes to Various Medications
3.19.3 Analyzing Set of Chromosomes in Humans, Animals
References
4. HDWR_SmartNet: A Smart Handwritten Devanagari Word Recognition System Using Deep ResNet-Based on Scan Profile Method
4.1 Introduction and Related Work
4.2 Features of Devanagari Script
4.3 Dataset Creation
4.4 Proposed System Architecture
4.4.1 Data Preprocessing and Data Augmentation
4.4.2 Proposed Handwritten Devanagari Word Recognition System with Novel No-Segmentation Approach
4.4.2.1 Cropper Method
4.4.2.2 First Approach: Sliding Window Method without Segmentation
4.4.2.3 Second Approach: Scan Profile Method
4.4.3 ResNet114 Model: Devanagari Character Recognition Model
4.5 Experiments, Results, and Discussion
4.5.1 Network Training Parameters
4.5.2 Experiment Results
4.6 Conclusion and Future Work
Dataset Accessibility Link
References
5. Safe Social Distance Monitoring and Face Mask Detection for Controlling COVID-19 Spread
5.1 Introduction
5.2 Literature Survey
5.3 Proposed Methodology
5.3.1 Social Distance Monitoring Model
5.3.2 Face Mask Detection Model
5.4 Results
5.4.1 For Social Distancing Monitoring Model
5.4.2 For Face Mask Detection Model
5.5 Conclusion
References
6. Real-Time Virtual Fitness Tracker and Exercise Posture Correction
6.1 Introduction
6.2 Literature Review
6.2.1 Motivation for the Research
6.3 Methodology
6.3.1 Brief Overview of Need for the System
6.3.2 Enhancing 2D Body Tracking Performance
6.3.2.1 Initial Body Pose Detection Using PoseNet
6.3.2.2 Feature Tracking Using the Lucas– Kanade Algorithm
6.3.3 Statistical Model of Proposed Model
6.4 Results and Discussion
6.4.1 Real-Time 2D Pose Estimation
6.4.2 Repetition Counter Mechanism
6.4.3 User Feedback and Posture Correction Mechanism
6.5 Conclusion
References
7. Role of Data Science in Revolutionizing Healthcare
7.1 Introduction
7.2 Applications of Data Science
7.3 Data Science Technique Used for Diabetes Detection
7.4 Methodology and Proposed Framework for Diabetes Detection
7.5 Results
7.6 Conclusion
7.7 Future Scope
References
8. Application of Artificial Intelligence Techniques in the Early-Stage Detection of Chronic Kidney Disease
8.1 Introduction
8.2 Literature Review
8.2.1 Based on Supervised Machine Learning Algorithms
8.2.2 Based on Deep Learning Techniques
8.3 Methodology Used
8.3.1 Machine Learning (ML) Methods
8.3.1.1 Support Vector Machine (SVM)
8.3.1.2 K-Nearest Neighbors (KNN)
8.3.1.3 Decision Tree Classifier
8.3.1.4 Random Forest (RF)
8.3.1.5 XGBoost
8.3.2 Deep Learning (DL) Methods
8.3.2.1 Artificial Neural Networks (ANN)
8.3.2.2 Multilayer Perceptron (MLP)
8.3.2.3 Recurrent Neural Network (RNN)
8.4 Results and Discussion
8.5 Conclusion and Future Work
References
9. Multi-Optimal Deep Learning Technique for Detection and Classification of Breast Cancer
9.1 Introduction
9.2 Literature Review
9.3 Material and Methodology
9.3.1 Convolution Neural Network
9.3.2 Image Acquisition
9.3.3 Image Pre-Processing
9.3.4 Image Segmentation
9.3.5 Feature Extraction
9.3.6 Classification
9.3.7 Detection
9.3.8 Performance Evaluation
9.4 Results and Discussion
9.5 Conclusion
References
10. Realizing Mother’s Features Influential on Childbirth Experience, towards Creation of a Dataset
10.1 Introduction
10.1.1 Significance of Woman’s Reproductive Health
10.1.1.1 Maternal Health as a Global Issue
10.1.1.2 Significance of Maternal Health in India
10.1.2 Lifestyle
10.1.3 Data in Research
10.2 Study of Features Influencing Pregnancy and Childbirth Experience
10.2.1 Phases of a Woman’s Reproductive Age
10.2.2 Features Selected for Study
10.2.3 Designing Survey Form
10.3 Data Collection
10.3.1 Selection of Subjects
10.3.2 Reaching Out to Subjects
10.3.3 Challenges while Collecting Data
10.3.4 Collection of Data
10.3.5 Limitations
10.4 MSF Dataset
10.4.1 Dataset Description
10.4.2 MSF Dataset Analysis
10.5 Conclusion
References
11. BERT- and FastText-Based Research Paper Recommender System
11.1 Introduction
11.2 Literature Review
11.3 Dataset Description
11.4 Proposed Methodology
11.4.1 Keyword Extraction
11.4.1.1 Add Norm
11.4.1.2 Feedforward Neural Network
11.4.1.3 Residual Connections
11.4.1.4 Masked Language Model
11.4.2 FastText
11.4.2.1 Word Embeddings
11.4.2.2 CBOW
11.4.2.3 Skip-Gram
11.4.2.4 Hierarchical Softmax
11.4.2.5 Word n-Grams
11.4.3 FastText Representation
11.4.4 Limitations
11.4.5 Future Scope
11.4.6 Conclusion
11.4.7 Applications
References
12. Analysis and Prediction of Crime Rate against Women Using Classification and Regression Trees
12.1 Introduction
12.1.1 Machine Learning Approach
12.2 Literature Survey
12.3 Proposed Methodologies
12.3.1 Data Preprocessing
12.3.2 Splitting Train and Test Data
12.3.3 Classification and Regression Trees (CART)
12.3.4 Model Evaluation
12.3.5 Data Visualization
12.4 Result and Discussions
12.5 Conclusion
References
13. Data Analysis for Technical Business Incubation Performance Improvement
13.1 Introduction
13.2 Evolution of Business Incubators and Their Current State
13.3 Success Factors
13.3.1 Affiliation to Education Hubs
13.3.2 Feasibility Study
13.3.3 Availability of Funding
13.3.4 Caliber of Entrepreneur
13.4 Successful Incubates and Graduates
13.4.1 Supportive Government Policies
13.4.2 Stakeholder Consensus
13.4.3 Competent and Properly Encouraged Management Team
13.4.4 An Able Advisory Board
13.4.4.1 Financial Sustainability
13.4.5 Entry and Exit Criteria
13.4.6 Networking
13.5 Services Provided by Incubator
13.5.1 Community Support
13.5.2 Modus Operandi of Successful Business Incubations
13.5.2.1 Principles
13.5.2.2 Best Practices
13.6 Result and Factor Analysis
13.6.1 Table KMO and Bartlett’s Test
13.6.2 Scree Plot of Individual Variances of Dimensions
13.6.3 Scree Plot of Eigenvalues of Dimensions
13.6.4 Correlation Plot
13.7 Conclusion
References
14. Satellite Imagery-Based Wildfire Detection Using Deep Learning
14.1 Introduction to the Proposed Chapter
14.2 Literature Review
14.3 Gaps in the Present Study
14.4 Proposed System and Algorithm
14.4.1 Algorithm
14.4.1.1 Adam Optimizer In-Depth
14.4.1.2 Adam Configuration/Hyper Parameters
14.4.1.3 Window/Block-Based Analysis
14.4.1.4 Binary Cross-Entropy Loss
14.5 Detailed Design
14.5.1 System Architecture
14.5.2 Design Diagrams
14.6 Conclusion
References
15. Low-Resource Language Document Summarization: A Challenge
15.1 Introduction
15.2 Literature Survey
15.3 Approaches for Automatic Summarization
15.3.1 Lexical Chaining Approach
15.4 BERT Approach
15.5 Conclusion
References
16. Eclectic Analysis of Classifiers for Fake News Detection
16.1 Introduction
16.2 Related Work
16.3 Dataset Description
16.3.1 Preprocessing
16.4 Modeling and Evaluation
16.4.1 Performance Metrics
16.4.1.1 Accuracy
16.4.1.2 F1-Score
16.4.1.3 Recall
16.4.1.4 Precision Score
16.4.1.5 Confusion Matrix
16.4.2 Hyperparameter Tuning
16.4.2.1 RandomizedSearchCV
16.4.2.2 GridSearchCV
16.4.3 Evaluation and Analysis
16.4.3.1 Model Implementation Using Logistic Regression
16.4.3.2 Model Implementation Using Naïve Bayes
16.4.3.3 Model Implementation Using KNN
16.4.3.4 Model Implementation Using Decision Trees
16.4.3.5 Model Implementation Using Random Forest
16.4.3.6 Model Implementation Using Boosting Ensemble Classifiers
16.4.3.7 Model Implementation Using LSTM
16.5 Conclusion, Limitations and Future Scope
References
17. Data Science and Machine Learning Applications for Mental Health
17.1 Introduction
17.2 Review of Literature
17.3 Detection of Mental Health Disorders through Social Media
17.4 Study of Data Mining and Machine Learning Techniques for Diagnosing Depression
17.4.1 Data Mining Approach to Discover Association Rules to Diagnose Depression
17.4.2 Machine Learning Approach to Detect Depression
17.5 Conclusion and Future Scope
References
18. Analysis of Ancient and Modern Meditation Techniques on Human Mind and Body and Their Effectiveness in COVID-19 Pandemic
18.1 Introduction
18.2 Meditation and Mindfulness
18.3 Literature Survey
18.4 Foundation of Study
18.5 Data Collection
18.5.1 SOS-S
18.5.2 BITe
18.5.3 SPANE
18.6 Data Analysis
18.6.1 Data Description
18.6.2 Chi-Square Test for Independence of Groups
18.6.2.1 Chi-Square Test for Determining a Relation between the Groups and Their Gender
18.6.2.2 Chi-Square Test for Determining a Relation between the Groups and Their Age
18.6.3 Data Visualization for the Ancient and Modern Meditation
18.6.4 Statistical Analysis
18.6.4.1 Jarque–Bera Test for Goodness of Fit
18.6.4.2 Comparison of SOS-S Scores of Ancient and Modern Meditation Groups
18.6.4.3 Comparison of BITe Scores of Ancient and Modern Meditation Groups
18.6.4.4 Comparison of SPANE-P Scores of Ancient and Modern Meditation Groups
18.6.4.5 Comparison of SPANE-N Scores of Ancient and Modern Meditation Groups
18.6.4.6 Comparison of SPANE-B Scores of Ancient and Modern Meditation Groups
18.7 Time Series Modeling
18.7.1 Modeling SOS-S Scores for Ancient and Modern Meditation Groups
18.7.2 Modeling BITe Scores for Ancient and Modern Meditation Groups
18.7.3 Modeling SPANE-B Scores for Ancient and Modern Meditation Groups
18.8 MEDit Architecture
18.8.1 Meditation Component
18.8.2 Evaluation Component
18.8.3 Discovery Component
18.9 Conclusion and Future Work
References
Index
توضیحاتی در مورد کتاب به زبان اصلی :
This book covers the topic of data science in a comprehensive manner and synthesizes both fundamental and advanced topics of a research area that has now reached its maturity. The book starts with the basic concepts of data science. It highlights the types of data and their use and importance, followed by a discussion on a wide range of applications of data science and widely used techniques in data science.
Key Features
• Provides an internationally respected collection of scientific research methods, technologies and applications in the area of data science.
• Presents predictive outcomes by applying data science techniques to real-life applications.
• Provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods.
• Gives the reader a variety of intelligent applications that can be designed using data science and its allied fields.
The book is aimed primarily at advanced undergraduates and graduates studying machine learning and data science. Researchers and professionals will also find this book useful.