توضیحاتی در مورد کتاب Deep Learning and Scientific Computing with R torch (Chapman & Hall/CRC The R Series)
نام کتاب : Deep Learning and Scientific Computing with R torch (Chapman & Hall/CRC The R Series)
ویرایش : 1 ed.
عنوان ترجمه شده به فارسی : یادگیری عمیق و محاسبات علمی با مشعل R (Chapman & Hall/CRC The R Series)
سری :
نویسندگان : Sigrid Keydana
ناشر : Chapman and Hall/CRC
سال نشر : 2023
تعداد صفحات : 394
[414]
ISBN (شابک) : 1032231386 , 9781032231389
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 11 Mb
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
این کتاب قصد دارد برای (تقریبا) همه مفید باشد. یادگیری عمیق و محاسبات علمی با R Torch مقدمهای کامل با اصول مشعل فراهم میکند - هم با توضیح دقیق مفاهیم و ایدههای زیربنایی، و هم با نشان دادن مثالهای کافی برای خواننده «مسلط» در مشعل.
فهرست مطالب :
Cover
Half Title
Series Page
Title Page
Copyright Page
Contents
List of Figures
Preface
Author Biography
I. Getting Familiar with Torch
1. Overview
2. On torch, and How to Get It
2.1. In torch World
2.2. Installing and Running torch
3. Tensors
3.1. What’s in a Tensor?
3.2. Creating Tensors
3.2.1. Tensors from values
3.2.2. Tensors from specifications
3.2.3. Tensors from datasets
3.3. Operations on Tensors
3.3.1. Summary operations
3.4. Accessing Parts of a Tensor
3.4.1. “Think R”
3.5. Reshaping Tensors
3.5.1. Zero-copy reshaping vs. reshaping with copy
3.6. Broadcasting
3.6.1. Broadcasting rules
4. Autograd
4.1. Why Compute Derivatives?
4.2. Automatic Differentiation Example
4.3. Automatic Differentiation with torch autograd
5. Function Minimization with autograd
5.1. An Optimization Classic
5.2. Minimization from Scratch
6. A Neural Network from Scratch
6.1. Idea
6.2. Layers
6.3. Activation Functions
6.4. Loss Functions
6.5. Implementation
6.5.1. Generate random data
6.5.2. Build the network
6.5.3. Train the network
7. Modules
7.1. Built-in nn_module()s
7.2. Building up a Model
7.2.1. Models as sequences of layers: nn_sequential() index{nn_sequential()}
7.2.2. Models with custom logic
8. Optimizers
8.1. Why Optimizers?
8.2. Using built-in torch Optimizers
8.3. Parameter Update Strategies
8.3.1. Gradient descent (a.k.a. steepest descent, a.k.a. stochastic gradient descent (SGD))
8.3.2. Things that matter
8.3.3. Staying on track: Gradient descent with momentum
8.3.4. Adagrad
8.3.5. RMSProp
8.3.6. Adam
9. Loss Functions
9.1. torch Loss Functions
9.2. What Loss Function Should I Choose?
9.2.1. Maximum likelihood
9.2.2. Regression
9.2.3. Classification
10. Function Minimization with L-BFGS
10.1. Meet L-BFGS
10.1.1. Changing slopes
10.1.2. Exact Newton method
10.1.3. Approximate Newton: BFGS and L-BFGS
10.1.4. Line search
10.2. Minimizing the Rosenbrock Function with optim_lbfgs()
10.2.1. optim_lbfgs() default behavior
10.2.2. optim_lbfgs() with line search
11. Modularizing the Neural Network
11.1. Data
11.2. Network
11.3. Training
11.4. What’s to Come
II. Deep Learning with torch
12. Overview
13. Loading Data
13.1. Data vs. dataset() vs. dataloader() – What’s the Difference?
13.2. Using dataset()s
13.2.1. A self-built dataset()
13.2.2. tensor_dataset()
13.2.3. torchvision::mnist_dataset()
13.3. Using dataloader()s
14. Training with luz
14.1. Que haya luz – Que haja luz – Let there be Light
14.2. Porting the Toy Example
14.2.1. Data
14.2.2. Model
14.2.3. Training
14.3. A More Realistic Scenario
14.3.1. Integrating training, validation, and test
14.3.2. Using callbacks to “hook” into the training process
14.3.3. How luz helps with devices
14.4. Appendix: A Train-Validate-Test Workflow Implemented by Hand
15. A First Go at Image Classification
15.1. What does It Take to Classify an Image?
15.2. Neural Networks for Feature Detection and Feature Emergence
15.2.1. Detecting low-level features with cross-correlation
15.2.2. Build up feature hierarchies
15.3. Classification on Tiny Imagenet
15.3.1. Data pre-processing
15.3.2. Image classification from scratch
16. Making Models Generalize
16.1. The Royal Road: more – and More Representative! – Data
16.2. Pre-processing Stage: Data Augmentation
16.2.1. Classic data augmentation
16.2.2. Mixup
16.3. Modeling Stage: Dropout and Regularization
16.3.1. Dropout
16.3.2. Regularization
16.4. Training Stage: Early Stopping
17. Speeding up Training
17.1. Batch Normalization
17.2. Dynamic Learning Rates
17.2.1. Learning rate finder
17.2.2. Learning rate schedulers
17.3. Transfer Learning
18. Image Classification, Take Two: Improving Performance
18.1. Data Input (Common for all)
18.2. Run 1: Dropout
18.3. Run 2: Batch Normalization
18.4. Run 3: Transfer Learning
19. Image Segmentation
19.1. Segmentation vs. Classification
19.2. U-Net, a “classic” in image segmentation
19.3. U-Net – a torch implementation
19.3.1. Encoder
19.3.2. Decoder
19.3.3. The “U”
19.3.4. Top-level module
19.4. Dogs and Cats
20. Tabular Data
20.1. Types of Numerical Data, by Example
20.2. A torch dataset for Tabular Data
20.3. Embeddings in Deep Learning: The Idea
20.4. Embeddings in deep learning: Implementation
20.5. Model and Model Training
20.6. Embedding-generated Representations by Example
21. Time Series
21.1. Deep Learning for Sequences: The Idea
21.2. A Basic Recurrent Neural Network
21.2.1. Basic rnn_cell()
21.2.2. Basic rnn_module()
21.3. Recurrent Neural Networks in torch
21.4. RNNs in Practice: GRU and LSTM
21.5. Forecasting Electricity Demand
21.5.1. Data inspection
21.5.2. Forecasting the very next value
21.5.3. Forecasting multiple time steps ahead
22. Audio Classification
22.1. Classifying Speech Data
22.2. Two Equivalent Representations
22.3. Combining Representations: The Spectrogram
22.4. Training a Model for Audio Classification
22.4.1. Baseline setup: Training a convnet on spectrograms
22.4.2. Variation one: Use a Mel-scale spectrogram instead
22.4.3. Variation two: Complex-valued spectograms
III. Other Things to do with torch: Matrices, Fourier Transform, and Wavelets
23. Overview
24. Matrix Computations: Least-squares Problems
24.1. Five Ways to do Least Squares
24.2. Regression for Weather Prediction
24.2.1. Least squares (I): Setting expectations with lm()
24.2.2. Least squares (II): Using linalg_lstsq()
24.2.3. Interlude: What if we hadn’t standardized the data?
24.2.4. Least squares (III): The normal equations
24.2.5. Least squares (IV): Cholesky decomposition
24.2.6. Least squares (V): LU factorization
24.2.7. Least squares (VI): QR factorization
24.2.8. Least squares (VII): Singular Value Decomposition (SVD)
24.2.9. Checking execution times
24.3. A Quick Look at Stability
25. Matrix Computations: Convolution
25.1. Why Convolution?
25.2. Convolution in One Dimension
25.2.1. Two ways to think about convolution
25.2.2. Implementation
25.3. Convolution in Two Dimensions
25.3.1. How it works (output view)
25.3.2. Implementation
26. Exploring the Discrete Fourier Transform (DFT)
26.1. Understanding the Output of torch_fft_fft()
26.1.1. Starting point: A cosine of frequency 1
26.1.2. Reconstructing the magic
26.1.3. Varying frequency
26.1.4. Varying amplitude
26.1.5. Adding phase
26.1.6. Superposition of sinusoids
26.2. Coding the DFT
26.3. Fun with sox
27. The Fast Fourier Transform (FFT)
27.1. Some Terminology
27.2. Radix-2 decimation-in-time(DIT) walkthrough
27.2.1. The main idea: Recursive split
27.2.2. One further simplification
27.3. FFT as Matrix Factorization
27.4. Implementing the FFT
27.4.1. DFT, the “loopy” way
27.4.2. DFT, vectorized
27.4.3. Radix-2 decimation in time FFT, recursive
27.4.4. Radix-2 decimation in time FFT by matrix factorization
27.4.5. Radix-2 decimation in time FFT, optimized for vectorization
27.4.6. Checking against torch_fft_fft()
27.4.7. Comparing performance
27.4.8. Making use of Just-in-Time (JIT) compilation
28. Wavelets
28.1. Introducing the Morlet Wavelet
28.2. The roles of
توضیحاتی در مورد کتاب به زبان اصلی :
This book aims to be useful to (almost) everyone. Deep Learning and Scientific Computing with R Torch provides a thorough introduction to torch basics - both by carefully explaining underlying concepts and ideas, and showing enough examples for the reader to become \"fluent\" in torch.