Deep Learning Approach for Natural Language Processing, Speech, and Computer Vision: Techniques and Use Cases

دانلود کتاب Deep Learning Approach for Natural Language Processing, Speech, and Computer Vision: Techniques and Use Cases

48000 تومان موجود

کتاب رویکرد یادگیری عمیق برای پردازش زبان طبیعی، گفتار و بینایی رایانه ای: تکنیک ها و موارد استفاده نسخه زبان اصلی

دانلود کتاب رویکرد یادگیری عمیق برای پردازش زبان طبیعی، گفتار و بینایی رایانه ای: تکنیک ها و موارد استفاده بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 2


توضیحاتی در مورد کتاب Deep Learning Approach for Natural Language Processing, Speech, and Computer Vision: Techniques and Use Cases

نام کتاب : Deep Learning Approach for Natural Language Processing, Speech, and Computer Vision: Techniques and Use Cases
عنوان ترجمه شده به فارسی : رویکرد یادگیری عمیق برای پردازش زبان طبیعی، گفتار و بینایی رایانه ای: تکنیک ها و موارد استفاده
سری :
نویسندگان : ,
ناشر : CRC Press
سال نشر : 2023
تعداد صفحات : 246
ISBN (شابک) : 9781032391656 , 9781003348689
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 41 Mb



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.

توضیحاتی در مورد کتاب :


رویکرد یادگیری عمیق برای پردازش زبان طبیعی، گفتار، و بینایی کامپیوتری مروری بر روش کلی یادگیری عمیق و کاربردهای آن در پردازش زبان طبیعی (NLP)، گفتار و وظایف بینایی کامپیوتری ارائه می‌کند. مفاهیم یادگیری عمیق را به روشی جامع و با نمونه‌های مناسب و کامل از مدل‌های یادگیری عمیق با هدف پر کردن شکاف بین تئوری و کاربردها با استفاده از مطالعات موردی با کد، آزمایش‌ها و تحلیل‌های پشتیبان ساده و ارائه می‌کند. . ویژگی ها: آخرین پیشرفت ها در تکنیک های یادگیری عمیق را پوشش می دهد که در تجزیه و تحلیل صوتی، بینایی کامپیوتری و NLP کاربرد دارد. در پایتون بینش هایی در مورد استفاده از ابزارها و کتابخانه های موجود در پایتون برای برنامه های کاربردی در دنیای واقعی ارائه می دهد. آموزش های قابل دسترسی آسان و مطالعات موردی در دنیای واقعی را با کدهایی برای ارائه تجربه عملی ارائه می دهد. این کتاب برای پژوهشگران و دانشجویان تحصیلات تکمیلی در رشته های مهندسی کامپیوتر، پردازش تصویر، گفتار و متن می باشد.

فهرست مطالب :


Cover Half Title Title Copyright Dedication Contents About the Authors Preface Acknowledgments Chapter 1 Introduction Learning Outcomes 1.1 Introduction 1.1.1 Subsets of Artificial Intelligence 1.1.2 Three Horizons of Deep Learning Applications 1.1.3 Natural Language Processing 1.1.4 Speech Recognition 1.1.5 Computer Vision 1.2 Machine Learning Methods for NLP, Computer Vision (CV), and Speech 1.2.1 Support Vector Machine (SVM) 1.2.2 Bagging 1.2.3 Gradient-boosted Decision Trees (GBDTs) 1.2.4 Naïve Bayes 1.2.5 Logistic Regression 1.2.6 Dimensionality Reduction Techniques 1.3 Tools, Libraries, Datasets, and Resources for the Practitioners 1.3.1 TensorFlow 1.3.2 Keras 1.3.3 Deeplearning4j 1.3.4 Caffe 1.3.5 ONNX 1.3.6 PyTorch 1.3.7 scikit-learn 1.3.8 NumPy 1.3.9 Pandas 1.3.10 NLTK 1.3.11 Gensim 1.3.12 Datasets 1.4 Summary Bibliography Chapter 2 Natural Language Processing Learning Outcomes 2.1 Natural Language Processing 2.2 Generic NLP Pipeline 2.2.1 Data Acquisition 2.2.2 Text Cleaning 2.3 Text Pre-processing 2.3.1 Noise Removal 2.3.2 Stemming 2.3.3 Tokenization 2.3.4 Lemmatization 2.3.5 Stop Word Removal 2.3.6 Parts of Speech Tagging 2.4 Feature Engineering 2.5 Modeling 2.5.1 Start with Simple Heuristics 2.5.2 Building Your Model 2.5.3 Metrics to Build Model 2.6 Evaluation 2.7 Deployment 2.8 Monitoring and Model Updating 2.9 Vector Representation for NLP 2.9.1 One Hot Vector Encoding 2.9.2 Word Embeddings 2.9.3 Bag of Words 2.9.4 TF-IDF 2.9.5 N-gram 2.9.6 Word2Vec 2.9.7 Glove 2.9.8 ElMo 2.10 Language Modeling with n-grams 2.10.1 Evaluating Language Models 2.10.2 Smoothing 2.10.3 Kneser-Ney Smoothing 2.11 Vector Semantics and Embeddings 2.11.1 Lexical Semantics 2.11.2 Vector Semantics 2.11.3 Cosine for Measuring Similarity 2.11.4 Bias and Embeddings 2.12 Summary Bibliography Chapter 3 State-of-the-Art Natural Language Processing Learning Outcomes 3.1 Introduction 3.2 Sequence-to-Sequence Models 3.2.1 Sequence 3.2.2 Sequence Labeling 3.2.3 Sequence Modeling 3.3 Recurrent Neural Networks 3.3.1 Unrolling RNN 3.3.2 RNN-based POS Tagging Use Case 3.3.3 Challenges in RNN 3.4 Attention Mechanisms 3.4.1 Self-attention Mechanism 3.4.2. Multi-head Attention Mechanism 3.4.3 Bahdanau Attention 3.4.4 Luong Attention 3.4.5 Global Attention versus Local Attention 3.4.6 Hierarchical Attention 3.5 Transformer Model 3.5.1 Bidirectional Encoder, Representations, and Transformers (BERT) 3.5.2 GPT3 3.6 Summary Bibliography Chapter 4 Applications of Natural Language Processing Learning Outcomes 4.1 Introduction 4.2 Word Sense Disambiguation 4.2.1 Word Senses 4.2.2 WordNet: A Database of Lexical Relations 4.2.3 Approaches to Word Sense Disambiguation 4.2.4 Applications of Word Sense Disambiguation 4.3 Text Classification 4.3.1 Building the Text Classification Model 4.3.2 Applications of Text Classification 4.3.3 Other Applications 4.4 Sentiment Analysis 4.4.1 Types of Sentiment Analysis 4.5 Spam Email Classification 4.5.1 History of Spam 4.5.2 Spamming Techniques 4.5.3 Types of Spams 4.6 Question Answering 4.6.1 Components of Question Answering System 4.6.2 Information Retrieval-based Factoid Question and Answering 4.6.3 Entity Linking 4.6.4 Knowledge-based Question Answering 4.7 Chatbots and Dialog Systems 4.7.1 Properties of Human Conversation 4.7.2 Chatbots 4.7.3 The Dialog-state Architecture 4.8 Summary Bibliography Chapter 5 Fundamentals of Speech Recognition Learning Outcomes 5.1 Introduction 5.2 Structure of Speech 5.3 Basic Audio Features 5.3.1 Pitch 5.3.2 Timbral Features 5.3.3 Rhythmic Features 5.3.4 MPEG-7 Features 5.4 Characteristics of Speech Recognition System 5.4.1 Pronunciations 5.4.2 Vocabulary 5.4.3 Grammars 5.4.4 Speaker Dependence 5.5 The Working of a Speech Recognition System 5.5.1 Input Speech 5.5.2 Audio Pre-processing 5.5.3 Feature Extraction 5.6 Audio Feature Extraction Techniques 5.6.1 Spectrogram 5.6.2 MFCC 5.6.3 Short-Time Fourier Transform 5.6.4 Linear Prediction Coefficients (LPCC) 5.6.5 Discrete Wavelet Transform (DWT) 5.6.6 Perceptual Linear Prediction (PLP) 5.7 Statistical Speech Recognition 5.7.1 Acoustic Model 5.7.2 Pronunciation Model 5.7.3 Language Model 5.7.4 Conventional ASR Approaches 5.8 Speech Recognition Applications 5.8.1 In Banking 5.8.2 In-Car Systems 5.8.3 Health Care 5.8.4 Experiments by Different Speech Groups for Large-Vocabulary Speech Recognition 5.8.5 Measure of Performance 5.9 Challenges in Speech Recognition 5.9.1 Vocabulary Size 5.9.2 Speaker-Dependent or -Independent 5.9.3 Isolated, Discontinuous, and Continuous Speech 5.9.4 Phonetics 5.9.5 Adverse Conditions 5.10 Open-source Toolkits for Speech Recognition 5.10.1 Frameworks 5.10.2 Additional Tools and Libraries 5.11 Summary Bibliography Chapter 6 Deep Learning Models for Speech Recognition Learning Outcomes 6.1 Traditional Methods of Speech Recognition 6.1.1 Hidden Markov Models (HMMs) 6.1.2 Gaussian Mixture Models (GMMs) 6.1.3 Artificial Neural Network (ANN) 6.1.4 HMM and ANN Acoustic Modeling 6.1.5 Deep Belief Neural Network (DBNN) for Acoustic Modelling 6.2 RNN-based Encoder–Decoder Architecture 6.3 Encoder 6.4 Decoder 6.5 Attention-based Encoder–Decoder Architecture 6.6 Challenges in Traditional ASR and the Motivation for End-to-End ASR 6.7 Summary Bibliography Chapter 7 End-to-End Speech Recognition Models Learning Outcomes 7.1 End-to-End Speech Recognition Models 7.1.1 Definition of End-to-End ASR System 7.1.2 Connectionist Temporal Classification (CTC) 7.1.3 Deep Speech 7.1.4 Deep Speech 2 7.1.5 Listen, Attend, Spell (LAS) Model 7.1.6 JASPER 7.1.7 QuartzNet 7.2 Self-supervised Models for Automatic Speech Recognition 7.2.1 Wav2Vec 7.2.2 Data2Vec 7.2.3 HuBERT 7.3 Online/Streaming ASR 7.3.1 RNN-transducer-Based Streaming ASR 7.3.2 Wav2Letter for Streaming ASR 7.3.3 Conformer Model 7.4 Summary Bibliography Chapter 8 Computer Vision Basics Learning Outcomes 8.1 Introduction 8.1.1 Fundamental Steps for Computer Vision 8.1.2 Fundamental Steps in Digital Image Processing 8.2 Image Segmentation 8.2.1 Steps in Image Segmentation 8.3 Feature Extraction 8.4 Image Classification 8.4.1 Image Classification Using Convolutional Neural Network (CNN) 8.4.2 Convolution Layer 8.4.3 Pooling or Down Sampling Layer 8.4.4 Flattening Layer 8.4.5 Fully Connected Layer 8.4.6 Activation Function 8.5 Tools and Libraries for Computer Vision 8.5.1 OpenCV 8.5.2 MATLAB 8.6 Applications of Computer Vision 8.6.1 Object Detection 8.6.2 Face Recognition 8.6.3 Number Plate Identification 8.6.4 Image-based Search 8.6.5 Medical Imaging 8.7 Summary Bibliography Chapter 9 Deep Learning Models for Computer Vision Learning Outcomes 9.1 Deep Learning for Computer Vision 9.2 Pre-trained Architectures for Computer Vision 9.2.1 LeNet 9.2.2 AlexNet 9.2.3 VGG 9.2.4 Inception 9.2.5 R-CNN 9.2.6 Fast R-CNN 9.2.7 Faster R-CNN 9.2.8 Mask R-CNN 9.2.9 YOLO 9.3 Summary Bibliography Chapter 10 Applications of Computer Vision Learning Outcomes 10.1 Introduction 10.2 Optical Character Recognition 10.2.1 Code Snippets 10.2.2 Result Analysis 10.3 Face and Facial Expression Recognition 10.3.1 Face Recognition 10.3.2 Facial Recognition System 10.3.3 Major Challenges in Recognizing Face Expression 10.3.4 Result Analysis 10.4 Visual-based Gesture Recognition 10.4.1 Framework Used 10.4.2 Code Snippets 10.4.3 Result Analysis 10.4.4 Major Challenges in Gesture Recognition 10.5 Posture Detection and Correction 10.5.1 Framework Used 10.5.2 Squats 10.5.3 Result Analysis 10.6 Summary Bibliography Index

توضیحاتی در مورد کتاب به زبان اصلی :


Deep Learning Approach for Natural Language Processing, Speech, and Computer Vision provides an overview of general deep learning methodology and its applications of natural language processing (NLP), speech and computer vision tasks. It simplifies and presents the concepts of deep learning in a comprehensive manner, with suitable, full-fledged examples of deep learning models, with an aim to bridge the gap between the theory and the applications using case studies with code, experiments, and supporting analysis. Features: Covers latest developments in deep learning techniques as applied to audio analysis, computer vision, and NLP Introduces contemporary applications of deep learning techniques as applied to audio, textual, and visual processing Discovers deep learning frameworks and libraries for NLP, speech and computer vision in Python Gives insights into using the tools and libraries in Python for real-world applications. Provides easily accessible tutorials, and real-world case studies with codes to provide hands-on experience. This book is aimed at researchers and graduate students in computer engineering, image, speech, and text processing.



پست ها تصادفی