Deep Learning: Theory, Architectures and Applications in Speech, Image and Language Processing

دانلود کتاب Deep Learning: Theory, Architectures and Applications in Speech, Image and Language Processing

30000 تومان موجود

کتاب یادگیری عمیق: تئوری، معماری و کاربردها در پردازش گفتار، تصویر و زبان نسخه زبان اصلی

دانلود کتاب یادگیری عمیق: تئوری، معماری و کاربردها در پردازش گفتار، تصویر و زبان بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 2


توضیحاتی در مورد کتاب Deep Learning: Theory, Architectures and Applications in Speech, Image and Language Processing

نام کتاب : Deep Learning: Theory, Architectures and Applications in Speech, Image and Language Processing
عنوان ترجمه شده به فارسی : یادگیری عمیق: تئوری، معماری و کاربردها در پردازش گفتار، تصویر و زبان
سری :
نویسندگان : ,
ناشر : Bentham Science Publishers
سال نشر : 2023
تعداد صفحات : 270
ISBN (شابک) : 9789815079210 , 9789815079227
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 37 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Title
Copyright
End User License Agreement
Contents
Foreword
Preface
List of Contributors
Deep Learning: History and Evolution
Application of Artificial Intelligence in Medical Imaging
Sampurna Panda1, Rakesh Kumar Dhaka1 and Babita Panda2,*
INTRODUCTION
MACHINE-LEARNING
Supervised Learning
Unsupervised Learning
Semi-supervised Learning
Active Learning
Reinforcement Learning
Evolutionary Learning
Introduction to Deep Learning
APPLICATION OF ML IN MEDICAL IMAGING
DEEP LEARNING IN MEDICAL IMAGING
Image Classification
Object Classification
Organ or Region Detection
Data Mining
The Sign-up Process
Other Imaging Applications
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENT
REFERENCES
Classification Tool to Predict the Presence of Colon Cancer Using Histopathology Images
Saleena Thorayanpilackal Sulaiman1,*, Muhamed Ilyas Poovankavil2 and Abdul Jabbar Perumbalath3
INTRODUCTION
METHODS AND PREPARATION
Dataset Preparation
Related Works
METHODOLOGY
Convolutional Neural Network (CNN)
ResNet50
RESULTS
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENT
REFERENCES
Deep Learning For Lung Cancer Detection
Sushila Ratre1,*, Nehha Seetharaman1 and Aqib Ali Sayed1
INTRODUCTION
RELATED WORKS
METHODOLOGY
VGG16 ARCHITECTURE
RESNET50 ARCHITECTURE
FLOWCHART OF THE METHODOLOGY
EXPERIMENTAL RESULTS
CONCLUDING REMARKS
ACKNOWLEDGEMENTS
REFERENCES
Exploration of Medical Image Super-Resolution in terms of Features and Adaptive Optimization
Jayalakshmi Ramachandran Nair1,*, Sumathy Pichai Pillai2 and Rajkumar Narayanan3
INTRODUCTION
LITERATURE REVIEW
METHODOLOGIES
Pre-Upsampling Super Resolution
Very Deep Super-Resolution Models
Post Upsampling Super Resolution
Residual Networks
Multi-stage Residual Networks (MDSR)
Balanced Two-Stage Residual Networks
Recursive Networks
Deep Recursive Convolution Network (DRCN)
Progressive Reconstruction Networks
Attention-Based Network
Pixel Loss
Perceptual Loss
Adversarial Loss
SYSTEM TOOLS
FINDINGS
CONCLUSION
ACKNOWLEDGEMENTS
REFERENCES
Analyzing the Performances of Different ML Algorithms on the WBCD Dataset
Trupthi Muralidharr1,*, Prajwal Sethu Madhav1, Priyanka Prashanth Kumar1 and Harshawardhan Tiwari1
INTRODUCTION
LITERATURE REVIEW
DATASET DESCRIPTION
PRE-PROCESSING OF DATA
Exploratory Data Analysis(EDA)
Model Accuracy: Receiver Operating Characteristic (ROC) curve:
RESULTS
CONCLUSION
ACKNOWLEDGEMENTS
REFERENCES
Application and Evaluation of Machine LearningAlgorithms in Classifying Cardiotocography(CTG) Signals
Deep SLRT: The Development of Deep Learning based Multilingual and Multimodal Sign Language Recognition and Translation Framework
Natarajan Balasubramanian1 and Elakkiya Rajasekar1,*
INTRODUCTION
RELATED WORKS
Subunit Modelling and Extraction of Manual Features and Non-manual Features
Challenges and Deep Learning Methods for SLRT Research
THE PROPOSED MODEL
Algorithm: 2 NMT-GAN based Deep SLRT Video Generation (Backward)
Training Details
EXPERIMENTAL RESULTS
CONCLUSION
ACKNOWLEDGEMENTS
REFERENCES
Hybrid Convolutional Recurrent Neural Network for Isolated Indian Sign Language Recognition
Rajasekar Elakkiya1, Archana Mathiazhagan1 and Elakkiya Rajalakshmi1,*
INTRODUCTION
RELATED WORK
METHODOLOGY
Proposed H-CRNN Framework
Data Acquisition, Preprocessing, and Augmentation
Proposed H-CRNN Architecture
Experiments and Results
CONCLUSION AND FUTURE WORK
ACKNOWLEDGEMENTS
REFERENCES
A Proposal of an Android Mobile Application for Senior Citizen Community with Multi-lingual Sentiment Analysis Chatbot
Harshee Pitroda1,*, Manisha Tiwari1 and Ishani Saha1
INTRODUCTION
LITERATURE REVIEW
Twitter data
PROPOSED FRAMEWORK
IMPLEMENTATION OVERVIEW
Exploratory Data Analysis (EDA)
Feature Extraction
Classification
Support Vector Machine
Decision Tree
Random Forest
Implementation
Pickling the Model
Translation
Integrating with the Android App
Code Snippets
Support Vector Machine
Decision Tree
Random Forest
RESULTS AND CONCLUSION
Results
Feature Extraction
Classification
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENT
REFERENCES
Technology Inspired-Elaborative Education Model (TI-EEM): A futuristic need for a Sustainable Education Ecosystem
Anil Verma1, Aman Singh1,*, Divya Anand1 and Rishika Vij2
INTRODUCTION
BACKGROUND
METHODOLOGY
RESULT AND DISCUSSION
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENT
REFERENCES
Knowledge Graphs for Explaination of Black-Box Recommender System
Mayank Gupta1 and Poonam Saini1,*
INTRODUCTION
Introduction to Recommender System
Introduction to Knowledge Graphs
RECOMMENDER SYSTEMS
Types of Recommender Systems
KNOWLEDGE GRAPHS
Knowledge Graphs for Providing Recommendations
Knowledge Graphs for Generating Explanations
GENERATING EXPLANATIONS FOR BLACK-BOX RECOMME-NDER SYSTEMS
PROPOSED CASE STUDY
MovieLens Dataset
Modules
Knowledge Graph Generation
The Proposed Approach for Case Study
Results
Graph Visualisation
CONCLUSION
REFERENCES
Universal Price Tag Reader for Retail Supermarket
Jay Prajapati1,* and Siba Panda1
INTRODUCTION
LITERATURE REVIEW
METHODOLOGY
Image Pre-processing and Cropping
Optical Character Recognition
Price of the product
Name of the product
Discounted Price
RESULTS AND FUTURE SCOPE
CONCLUDING REMARKS
ACKNOWLEDGEMENTS
REFERENCES
The Value Alignment Problem: Building Ethically Aligned Machines
Sukrati Chaturvedi1,*, Chellapilla Vasantha Lakshmi1 and Patvardhan Chellapilla1
INTRODUCTION
Value Alignment Problem
Approaches for Solving AI-VAP
Top-Down Approach
Limitations, Issues, and Challenges of Extant Approaches
Eastern Perspectives of Intelligence for Solving AI-VAP
Proposed Approach
CONCLUSION
REFERENCES
Cryptocurrency Portfolio Management Using Reinforcement Learning
Vatsal Khandor1,*, Sanay Shah1, Parth Kalkotwar1, Saurav Tiwari1 and Sindhu Nair1
INTRODUCTION
RELATED WORK
DATASET PRE-PROCESSING
Simple Moving Average
Moving Average Convergence/Divergence
Parabolic Stop and Reverse
Relative Strength Index
MODELING AND EVALUATION
Convolutional Neural Networks (CNN)
Dense Neural Network Model
CONCLUSION AND FUTURE SCOPE
REFERENCES
Subject Index
Back Cover




پست ها تصادفی