توضیحاتی در مورد کتاب :
تجزیه و تحلیل، طراحی و تحقق فیلترهای دیجیتال از دهه 1970 با پیشرفت های عمده ای روبرو شده است و اکنون بخشی جدایی ناپذیر از تئوری و عمل در زمینه پردازش سیگنال دیجیتال معاصر است. طراحی و تحقق فیلتر دیجیتال گزارشی به روز و جامع از تجزیه و تحلیل، طراحی و اجرای فیلترهای دیجیتال ارائه می دهد. در نظر گرفته شده است که به عنوان یک متن برای دانشجویان تحصیلات تکمیلی و همچنین یک کتاب مرجع برای پزشکان در این زمینه استفاده شود. پیش نیازهای این کتاب شامل دانش پایه حساب دیفرانسیل و انتگرال، جبر خطی، تحلیل سیگنال و تئوری سیستم خطی است.
موضوعات فنی مورد بحث در کتاب عبارتند از:
- سیستم های زمان گسسته و z-Transformation
- ثبات و حساسیت ضریب
- مدل های فضایی حالت
- طراحی فیلتر دیجیتال FIR
- طراحی فیلتر دیجیتال دامنه فرکانس
- طراحی فیلتر دیجیتال Time-Domain
- طراحی فیلتر دیجیتال FIR درون یابی و فرکانس پاسخ - پوشش
- طراحی فیلتر دیجیتال کامپوزیت
- جلوه های طول کلمه محدود
- تجزیه و تحلیل ضریب حساسیت و به حداقل رساندن
- شکل دهی طیف خطا
- تجزیه و تحلیل و به حداقل رساندن نویز گرد
- فرم دوم انتقال مستقیم
- تحقق Block-State
فهرست مطالب :
Front Cover
Half Title Page
RIVER PUBLISHERS SERIES IN SIGNAL, IMAGE AND SPEECH PROCESSING
Title Page - Digital Filter Design and Realization
Copyright Page
Contents
Preface
List of Figures
List of Tables
List of Abbreviations
Chapter 1 - Introduction
1.1 Preview
1.2 Terminology for Signal Analysis and Typical Signals
1.2.1 Terminology for Signal Analysis
1.2.2 Examples of Typical Signals
1.3 Digital Signal Processing
1.3.1 General Framework for Digital Signal Processing
1.3.2 Advantages of Digital Signal Processing
1.3.3 Disadvantages of Digital Signal Processing
1.4 Analysis of Analog Signals
1.4.1 The Fourier Series Expansion of Periodic Signals
1.4.2 The Fourier Transform
1.4.3 The Laplace Transform
1.5 Analysis of Discrete-Time Signals
1.5.1 Sampling an Analog Signal
1.5.2 The Discrete-Time Fourier Transform
1.5.3 The Discrete Fourier Transform (DFT)
1.5.4 The z-Transform
1.6 Sampling of Continuous-Time Sinusoidal Signals
1.7 Aliasing
1.8 Sampling Theorem
1.9 Recovery of an Analog Signal
1.10 Summary
References
Chapter 2 - Discrete-Time Systems and z-Transformation
2.1 Preview
2.2 Discrete-Time Signals
2.3 z-Transform of Basic Sequences
2.3.1 Fundamental Transforms
2.3.2 Properties of z-Transform
2.4 Inversion of z-Transforms
2.4.1 Partial Fraction Expansion
2.4.2 Power Series Expansion
2.4.3 Contour Integration
2.5 Parseval’s Theorem
2.6 Discrete-Time Systems
2.7 Difference Equations
2.8 State-Space Descriptions
2.8.1 Realization 1
2.8.2 Realization 2
2.9 Frequency Transfer Functions
2.9.1 Linear Time-Invariant Causal Systems
2.9.2 Rational Transfer Functions
2.9.3 All-Pass Digital Filters
2.9.4 Notch Digital Filters
2.9.5 Doubly Complementary Digital Filters
2.10 Summary
References
Chapter 3 - Stability and Coefficient Sensitivity
3.1 Preview
3.2 Stability
3.2.1 Definition
3.2.2 Stability in Terms of Poles
3.2.3 Schur-Cohn Criterion
3.2.4 Schur-Cohn-Fujiwara Criterion
3.2.5 Jury-Marden Criterion
3.2.6 Stability Triangle of Second-Order Polynomials
3.2.7 Lyapunov Criterion
3.3 Coefficient Sensitivity
3.4 Summary
References
Chapter 4 - State-Space Models
4.1 Preview
4.2 Controllability and Observability
4.3 Transfer Function
4.3.1 Impulse Response
4.3.2 Faddeev’s Formula
4.3.3 Cayley-Hamilton’s Theorem
4.4 Equivalent Systems
4.4.1 Equivalent Transformation
4.4.2 Canonical Forms
4.4.3 Balanced, Input-Normal, and Output-Normal State-Space Models
4.5 Kalman’s Canonical Structure Theorem
4.6 Hankel Matrix and Realization
4.6.1 Minimal Realization
4.6.2 Minimal Partial Realization
4.6.3 Balanced Realization
4.7 Discrete-Time Lossless Bounded-Real Lemma
4.8 Summary
References
Chapter 5 - FIR Digital Filter Design
5.1 Preview
5.2 Filter Classification
5.3 Linear-phase Filters
5.3.1 Frequency Transfer Function
5.3.2 Symmetric Impulse Responses
5.3.3 Antisymmetric Impulse Responses
5.4 Design Using Window Function
5.4.1 Fourier Series Expansion
5.4.2 Window Functions
5.4.3 Frequency Transformation
5.5 Least-Squares Design
5.5.1 Quadratic-Measure Minimization
5.5.2 Eigenfilter Method
5.6 Analytical Approach
5.6.1 General FIR Filter Design
5.6.2 Linear-Phase FIR Filter Design
5.7 Chebyshev Approximation
5.7.1 The Parks-McClellan Algorithm
5.7.2 Alternation Theorem
5.8 Cascaded Lattice Realization of FIR Digital Filters
5.9 Numerical Experiments
5.9.1 Least-Squares Design
5.9.1.1 Quadratic measure minimization
5.9.1.2 Eigenfilter method
5.9.2 Analytical Approach
5.9.2.1 General FIR filter design
5.9.2.2 Linear-Phase FIR filter design
5.9.3 Chebyshev Approximation
5.9.4 Comparison of Algorithms’ Performances
5.10 Summary
References
Chapter 6 - Design Methods Using Analog Filter Theory
6.1 Preview
6.2 Design Methods Using Analog Filter Theory
6.2.1 Lowpass Analog-Filter Approximations
6.2.1.1 Butterworth approximation
6.2.1.2 Chebyshev approximation
6.2.1.3 Inverse-Chebyshev approximation
6.2.1.4 Elliptic approximation
6.2.2 Other Analog-Filter Approximations by Transformations
6.2.2.1 Lowpass-to-lowpass transformation
6.2.2.2 Lowpass-to-highpass transformation
6.2.2.3 Lowpass-to-bandpass transformation
6.2.2.4 Lowpass-to-bandstop transformation
6.2.3 Design Methods Based on Analog Filter Theory
6.2.3.1 Invariant impulse-response method
6.2.3.2 Bilinear-transformation method
6.3 Summary
References
Chapter 7 - Design Methods in the Frequency Domain
7.1 Preview
7.2 Design Methods in the Frequency Domain
7.2.1 Minimum Mean Squared Error Design
7.2.2 An Equiripple Design by Linear Programming
7.2.3 Weighted Least-Squares Design with Stability Constraints
7.2.4 Minimax Design with Stability Constraints
7.3 Design of All-Pass Digital Filters
7.3.1 Design of All-Pass Filters Based on Frequency Response Error
7.3.2 Design of All-Pass Filters Based on Phase Characteristic Error
7.3.3 A Numerical Example
7.4 Summary
References
Chapter 8 - Design Methods in the Time Domain
8.1 Preview
8.2 Design Based on Extended Pade’s Approximation
8.2.1 A Direct Procedure
8.2.2 A Modified Procedure
8.3 Design Using Second-Order Information
8.3.1 A Filter Design Method
8.3.2 Stability
8.3.3 An Efficient Algorithm for Solving (8.35)
8.4 Least-Squares Design
8.5 Design Using State-Space Models
8.5.1 Balanced Model Reduction
8.5.2 Stability and Minimality
8.6 Numerical Experiments
8.6.1 Design Based on Extended Pade’s Approximation
8.6.2 Design Using Second-Order Information
8.6.3 Least-Squares Design
8.6.4 Design Using State-Space Model (Balanced Model Reduction)
8.6.5 Comparison of Algorithms’ Performances
8.7 Summary
References
Chapter 9 - Design of Interpolated and FRM FIR Digital Filters
9.1 Preview
9.2 Basics of IFIR and FRM Filters and CCP
9.2.1 Interpolated FIR Filters
9.2.2 Frequency-Response-Masking Filters
9.2.3 Convex-Concave Procedure (CCP)
9.3 Minimax Design of IFIR Filters
9.3.1 Problem Formulation
9.3.2 Convexification of (9.10) Using CCP
9.3.3 Remarks on Convexification in (9.13)–(9.14)
9.4 Minimax Design of FRM Filters
9.4.1 The Design Problem
9.4.2 A CCP Approach to Solving (9.23)
9.5 FRM Filters with Reduced Complexity
9.5.1 Design Phase 1
9.5.2 Design Phase 2
9.6 Design Examples
9.6.1 Design and Evaluation Settings
9.6.2 Design of IFIR Filters
9.6.3 Design of FRM Filters
9.6.4 Comparisons with Conventional FIR Filters
9.7 Summary
References
Chapter 10 - Design of a Class of Composite Digital Filters
10.1 Preview
10.2 Composite Filters and Problem Formulation
10.2.1 Composite Filters
10.2.2 Problem Formulation
10.3 Design Method
10.3.1 Design Strategy
10.3.2 Solving (10.7) with y Fixed to y = yk
10.3.3 Updating y with x Fixed to x = xk
10.3.4 Summary of the Algorithm
10.4 Design Example and Comparisons
10.5 Summary
References
Chapter 11 - FiniteWord Length Effects
11.1 Preview
11.2 Fixed-Point Arithmetic
11.3 Floating-Point Arithmetic
11.4 Limit Cycles—Overflow Oscillations
11.5 Scaling Fixed-Point Digital Filters to Prevent Overflow
11.6 Roundoff Noise
11.7 Coefficient Sensitivity
11.8 State-Space Descriptions with FiniteWord Length
11.9 Limit Cycle-Free Realization
11.10 Summary
References
Chapter 12 - l2-Sensitivity Analysis and Minimization
12.1 Preview
12.2 l2-Sensitivity Analysis
12.3 Realization with Minimal l2-Sensitivity
12.4 l2-Sensitivity Minimization Subject to l2-Scaling Constraints Using Quasi-Newton Algorithm
12.4.1 l2-Scaling and Problem Formulation
12.4.2 Minimization of (12.18) Subject to l2-Scaling Constraints — Using Quasi-Newton Algorithm
12.4.3 Gradient of J(x)
12.5 l2-Sensitivity Minimization Subject to l2-Scaling Constraints Using Lagrange Function
12.5.1 Minimization of (12.19) Subject to l2-Scaling Constraints — Using Lagrange Function
12.5.2 Derivation of Nonsingular T from P to Satisfy l2-Scaling Constraints
12.6 Numerical Experiments
12.6.1 Filter Description and Initial l2-Sensitivity
12.6.2 l2-Sensitivity Minimization
12.6.3 l2-Sensitivity Minimization Subject to l2-Scaling Constraints Using Quasi-Newton Algorithm
12.6.4 l2-Sensitivity Minimization Subject to l2-Scaling Constraints Using Lagrange Function
12.7 Summary
References
Chapter 13 - Pole and Zero Sensitivity Analysis and Minimization
13.1 Preview
13.2 Pole and Zero Sensitivity Analysis
13.3 Realization with Minimal Pole and Zero Sensitivity
13.3.1 Weighted Pole and Zero Sensitivity Minimization WithoutImposing l2-Scaling Constraints
13.3.2 Zero Sensitivity Minimization Subject to Minimal Pole Sensitivity
13.4 Pole Zero Sensitivity Minimization Subject to l2-Scaling Constraints Using Lagrange Function
13.4.1 l2-Scaling Constraints and Problem Formulation
13.4.2 Minimization of (13.37) Subject to l2-Scaling Constraints — Using Lagrange Function
13.4.3 Derivation of Nonsingular T from P to Satisfyl2-Scaling Constraints
13.5 Pole and Zero Sensitivity Minimization Subject to l2-Scaling Constraints Using Quasi-Newton Algorithm
13.5.1 l2-Scaling and Problem Formulation
13.5.2 Minimization of (13.68) Subject to l2-Scaling Constraints — Using Quasi-Newton Algorithm
13.5.3 Gradient of J(x)
13.6 Numerical Experiments
13.6.1 Filter Description and Initial Pole and Zero Sensitivity
13.6.2 Weighted Pole and Zero Sensitivity Minimization Without Imposing l2-Scaling Constraints
13.6.3 Weighted Pole and Zero Sensitivity Minimization Subject to l2-Scaling Constraints Using Lagrange Function
13.6.4 Weighted Pole and Zero Sensitivity Minimization Subject to l2-Scaling Constraints Using Quasi-Newton Algorithm
13.7 Summary
References
Chapter 14 - Error Spectrum Shaping
14.1 Preview
14.2 IIR Digital Filters with High-Order Error Feedback
14.2.1 Nth-Order Optimal Error Feedback
14.2.2 Computation of Autocorrelation Coefficients
14.2.3 Error Feedback with Symmetric or Antisymmetric Coefficients
14.3 State-Space Filter with High-Order Error Feedback
14.3.1 Nth-Order Optimal Error Feedback
14.3.2 Computation of Qi for i = 0, 1, · · · ,N − 1
14.3.3 Error Feedback with Symmetric orAntisymmetric Matrices
14.4 Numerical Experiments
14.4.1 Example 1 : An IIR Digital Filter
14.4.2 Example 2 : A State-Space Digital Filter
14.5 Summary
References
Chapter 15 - Roundoff Noise Analysis and Minimization
15.1 Preview
15.2 Filters Quantized after Multiplications
15.2.1 Roundoff Noise Analysis and Problem Formulation
15.2.2 Roundoff Noise Minimization Subject to l2-Scaling Constraints
15.3 Filters Quantized before Multiplications
15.3.1 State-Space Model with High-Order Error Feedback
15.3.2 Formula for Noise Gain
15.3.3 Problem Formulation
15.3.4 Joint Optimization of Error Feedback and Realization
15.3.4.1 The Use of Quasi-Newton Algorithm
15.3.4.2 Gradient of J(x)
15.3.5 Analytical Method for Separate Optimization
15.4 Numerical Experiments
15.4.1 Filter Description and Initial Roundoff Noise
15.4.2 The Use of Analytical Method in Section 15.2.2
15.4.3 The Use of Iterative Method in Section 15.3.4
15.5 Summary
References
Chapter 16 - Generalized Transposed Direct-Form II Realization
16.1 Preview
16.2 Structural Transformation
16.3 Equivalent State-Space Realization
16.3.1 State-Space Realization I
16.3.2 State-Space Realization II
16.3.3 Choice of {Δi} Satisfying l2-Scaling Constraints
16.4 Analysis of Roundoff Noise
16.4.1 Roundoff Noise of ρ-Operator Transposed Direct-Form II Structure
16.4.2 Roundoff Noise of Equivalent State-Space Realization
16.5 Analysis of l2-Sensitivity
16.5.1 l2-Sensitivity of ρ-Operator Transposed Direct-Form II Structure
16.5.2 l2-Sensitivity of Equivalent State-Space Realization
16.6 Filter Synthesis
16.6.1 Computation of Roundoff Noise and l2-Sensitivity
16.6.2 Choice of Parameters {γi| i = 1, 2, · · · , n}
16.6.3 Search of Optimal Vector γ = [γ1, γ2, · · · , γn]T
16.7 Numerical Experiments
16.8 Summary
References
Chapter 17 - Block-State Realization of IIR Digital Filters
17.1 Preview
17.2 Block-State Realization
17.3 Roundoff Noise Analysis and Minimization
17.3.1 Roundoff Noise Analysis
17.3.2 Roundoff Noise Minimization Subject to l2-Scaling Constraints
17.4 l2-Sensitivity Analysis and Minimization
17.4.1 l2-Sensitivity Analysis
17.4.2 l2-Sensitivity Minimization Subject to l2-Scaling Constraints
17.4.2.1 Method 1: using a Lagrange function
17.4.2.2 Method 2: using a Quasi-Newton algorithm
17.4.3 l2-Sensitivity Minimization Without Imposing l2-Scaling Constraints
17.4.4 Numerical Experiments
17.5 Summary
References
Index
About the Authors
Back Cover
توضیحاتی در مورد کتاب به زبان اصلی :
Analysis, design, and realization of digital filters have experienced major developments since the 1970s and are now an integral part of the theory and practice in the field of contemporary digital signal processing. Digital Filter Design and Realization presents an up-to-date and comprehensive account of the analysis, design, and realization of digital filters. It is intended to be used as a text for graduate students as well as a reference book for practitioners in the field. Prerequisites for this book include basic knowledge of calculus, linear algebra, signal analysis, and linear system theory.
Technical topics discussed in the book include:
- Discrete-Time Systems and z-Transformation
- Stability and Coefficient Sensitivity
- State-Space Models
- FIR Digital Filter Design
- Frequency-Domain Digital Filter Design
- Time-Domain Digital Filter Design
- Interpolated and Frequency-Response-Masking FIR Digital Filter Design
- Composite Digital Filter Design
- Finite Word Length Effects
- Coefficient Sensitivity Analysis and Minimization
- Error Spectrum Shaping
- Roundoff Noise Analysis and Minimization
- Generalized Transposed Direct-Form II
- Block-State Realization