توضیحاتی در مورد کتاب :
دوربین های دیجیتال SLR عکاسی از آسمان شب را آسان تر از همیشه کرده اند. چه مبتدی باشید، چه عکاس طبیعت یا یک ستاره شناس جدی، این کتاب راهنمای قطعی برای ثبت آسمان است. با شروع پروژه های ساده برای مبتدیان مانند دوربین های روی سه پایه، سپس به سمت پروژه های پیشرفته تر از جمله عکاسی از تلسکوپ و روش های تحقیقات نجومی حرکت می کند. این نسخه جدید با 80 درصد مطالب اصلاح شده و به روز شده، مناظر شب، کسوف، با استفاده از دوربین هایی با ردیاب ها و تلسکوپ های آسمان و ابزارهایی برای شناسایی اجرام آسمانی و بررسی علمی آنها را پوشش می دهد. پردازش تصویر به تفصیل با نمونههای کار شده از سه بسته نرمافزاری محبوب - Nebulosity، Maxlm DL و PixInsight مورد بحث قرار گرفته است. کاوینگتون به جای اتخاذ رویکرد کتاب دستور العمل، نحوه عملکرد تجهیزات شما را توضیح می دهد و همچنین در مورد بسیاری از ملاحظات عملی، مانند انتخاب راه اندازی و آزمایش لنزها، توصیه هایی را ارائه می دهد، که این را به یک راهنمای جامع برای هر کسی که در عکاسی نجومی مشغول است تبدیل می کند.
فهرست مطالب :
Contents
Preface
Part I DSLRs for Astrophotography
1 Welcome to DSLR Astrophotography
1.1 What is a DSLR?
1.1.1 Digital Single-Lens Reflex Cameras
1.1.2 DSLRs without Mirrors: MILCs
1.2 DSLRs versus Other Cameras
1.2.1 Dedicated Astrocameras
1.2.2 Fixed-Lens Digital Cameras?
1.2.3 What about Film?
1.3 Choosing a DSLR
1.3.1 Canon vs. Nikon vs. Others
1.3.2 Camera Features
1.3.3 Shopping Strategy
1.4 Choosing Software
1.5 Choosing the Computer
1.6 Choosing the Telescope or Lens
1.6.1 The Aperture Counterrevolution
1.6.2 The 500-mm Optimum
1.6.3 Ease of Use
1.7 Choosing the Mount
1.8 The Craft of Astrophotography
1.8.1 Building your Skill and Judging your Achievements
1.8.2 Pushing Limits or Staying within Them
1.8.3 Testing as a Means or an End
1.8.4 Philosophical and Ethical Issues
1.8.5 Amateur or Professional?
2 Digital Image Technology
2.1 What is a Digital Image?
2.1.1 Bit Depth
2.1.2 Linear or Gamma-corrected?
2.1.3 Color Encoding
2.1.4 The Alpha Channel
2.1.5 Frames
2.2 File Formats
2.2.1 File Size
2.2.2 Compression
2.2.3 Raw Files
2.2.4 dcraw and Adobe DNG
2.2.5 JPEG
2.2.6 TIFF
2.2.7 PNG
2.2.8 FITS
2.2.9 XISF
2.3 Color Imaging in Detail
2.3.1 The Bayer Matrix (CFA)
2.3.2 Low-pass Filtering
2.3.3 Nebulae are Blue or Pink, not Red
2.3.4 Color Balance (White Balance)
2.3.5 Gamut
2.4 Image Size and Resizing
2.4.1 Dots per Inch
2.4.2 Resampling
2.4.3 Binning
2.4.4 The Drizzle Algorithm
2.5 Histograms, Brightness, and Contrast
2.5.1 Histograms
2.5.2 Histogram Equalization
2.5.3 Curve Shape
2.5.4 Gamma Correction in Detail
2.6 Sharpening
2.6.1 Edge Enhancement
2.6.2 Unsharp Masking
2.6.3 Spatial Frequency and Wavelet Transforms
2.6.4 Multiscale Processing
2.6.5 Deconvolution
3 DSLR Operation
3.1 Taking a Picture Manually
3.1.1 Shutter Speed and Aperture
3.1.2 Manual Focusing
3.1.3 ISO Speed
3.1.4 Do You Want an Automatic Dark Frame?
3.2 Menu Settings
3.2.1 Things to Set Once and Leave Alone
3.2.2 Settings for an Astrophotography Session
3.3 How to See that Tiny Screen
3.4 More Features of the Camera Body
3.4.1 The Eyepiece Diopter
3.4.2 The Strap and Eyepiece Cover
3.4.3 Limiting Light Emission from the Camera
3.5 Tripping the Shutter without Shaking the Telescope
3.5.1 Self-timers and Remote Controls
3.5.2 Mirror Lock and Prefire
3.5.3 Electronic First-curtain Shutter (EFCS)
3.5.4 Other Tricks
3.5.5 Vibration-reducing Lenses
3.6 Focusing
3.6.1 Magnified Preview on the Screen
3.6.2 Stars and Spikes
3.6.3 Computer Focusing
3.6.4 Focusing Telescopes with Moving Mirrors
3.7 Other Image Quality Issues
3.7.1 Grain
3.7.2 Star Eaters
3.7.3 Dust on the Sensor
3.8 The Camera as Your Logbook
4 Five Simple Projects
4.1 Telephoto Moon
4.2 Afocal Moon
4.3 Stretching – The Processing Technique to Learn Now
4.4 Stars from a Fixed Tripod
4.5 Nightscapes
4.6 Piggybacking
4.7 Going Further
Part II Equipment and Techniques
5 Deep-sky Image Acquisition
5.1 How to Avoid Most of This Work
5.2 How Long to Expose
5.3 Dithering
5.4 Taking Calibration Frames
5.4.1 Dark Frames
5.4.2 Flats
5.4.3 Flat Darks
5.4.4 Bias Frames
6 Coupling Cameras to Telescopes
6.1 Optical Configurations
6.1.1 Types of Telescopes
6.1.2 Newer Telescopes
6.1.3 Types of Coupling
6.2 Fitting it All Together
6.2.1 Types of Adapters
6.2.2 Sensor Position Matters
6.3 Optical Parameters
6.3.1 Focal Length
6.3.2 Aperture
6.3.3 f -Ratio and Image Brightness
6.3.4 Field of View
6.3.5 Sensor Size
6.3.6 Arc-seconds per Pixel
6.3.7 “What is the Magnification of This Picture?”
6.4 Edge-of-field Quality and Vignetting
7 Camera Lenses
7.1 Why You Need Another Lens
7.1.1 Big Lens or Small Telescope?
7.1.2 Field of View
7.1.3 f -Ratio
7.1.4 Zoom or Non-zoom?
7.2 Lens Quality
7.2.1 Sharpness, Vignetting, Distortion, and Bokeh
7.2.2 Reading MTF Curves
7.2.3 Telecentricity
7.2.4 Construction Quality
7.3 Which Lenses Fit Which Cameras?
7.3.1 Canon
7.3.2 Nikon
7.3.3 Lens Mount Adapters
7.3.4 What if there’s no Aperture Ring?
7.3.5 Adapter Quality
7.3.6 The Classic M42 Lens Mount
7.4 Supporting and Mounting a Lens
7.5 Testing a Lens
7.5.1 How to Test
7.5.2 Limitations of the Lens Design
7.6 Diffraction Spikes around the Stars
7.7 Understanding Lens Design
7.7.1 How Lens Designs Evolve
7.7.2 The Triplet and its Descendants
7.7.3 The Double Gauss
7.7.4 Telephoto and Retrofocus Lenses
7.8 Special Lenses
7.8.1 Macro Lenses
7.8.2 Mirror Lenses
7.8.3 Image Stabilization (Vibration Reduction)
7.8.4 Diffractive Optics
8 Tracking the Stars
8.1 Two Ways to Track the Stars
8.2 The Rules Have Changed
8.3 Types of Equatorial Mounts
8.3.1 Fork Mounts on Wedges
8.3.2 Sky Trackers
8.3.3 German Equatorial Mounts (GEMs)
8.4 Hardware
8.4.1 Dovetails
8.4.2 Counterweights
8.5 Setting up a Computerized Equatorial Mount
8.5.1 The Difference Between Polar and Go-to Alignment
8.5.2 Don’t Judge it by the First Star
8.5.3 Must You Level the Tripod?
8.5.4 Hints for Go-to Alignment
8.5.5 Go-to Alignment with just a Telephoto Lens
8.5.6 Using Go-to Alignment to Refine Polar Alignment
8.6 Classic Methods
8.6.1 Finding the Pole in the Sky
8.6.2 More about Polar Scopes
8.6.3 The Drift Method
8.6.4 Automated Drift Method
8.6.5 Why the Drift Method is Best
8.7 How Accurately Must We Polar-align?
9 Precision Tracking and Guiding
9.1 Why Telescopes Do not Track Perfectly
9.2 Must We Make Guiding Corrections?
9.2.1 Sometimes, no
9.2.2 A Futile Quest
9.3 Mount Performance
9.3.1 How Tracking Error is Measured
9.3.2 Periodic Gear Error
9.3.3 Backlash
9.3.4 Flexure
9.4 Periodic-error Correction (PEC)
9.5 Autoguiding
9.5.1 The Concept
9.5.2 Subpixel Accuracy
9.5.3 Communication with the Mount
9.5.4 Autoguiding Software
9.6 Cameras, Guidescopes, and Off-axis Guiders
9.6.1 The Guide Camera
9.6.2 Guidescopes
9.6.3 Off-axis Guiders
9.6.4 On-axis Guiding
9.7 Using an Autoguider
9.7.1 Choosing a Guide Star
9.7.2 Hot Pixels and Dark Frames
9.7.3 Calibration
9.7.4 Autoguider Settings
9.7.5 Algorithms
9.7.6 Quality of Guiding
9.7.7 Interpreting Guiding Graphs
9.7.8 Right Ascension and Declination are Different
9.7.9 PEC while Autoguiding?
9.7.10 Good Autoguiding, Bad Pictures
9.8 The Challenge of Round Star Images
9.8.1 What Should a Star Image Look Like?
9.8.2 How Roundness is Measured
9.8.3 Some Practical Tips
9.8.4 Downsampling
9.8.5 Deconvolution
10 Power and Camera Control in the Field
10.1 Portable Electric Power
10.1.1 Power for the Telescope
10.1.2 DC Power Connectors
10.1.3 Voltage
10.1.4 Powering the Computer and Camera
10.1.5 Care of Li-ion Batteries
10.1.6 Ground Loop Problems
10.1.7 Safety
10.2 Camera Control
10.2.1 How Camera Control is Done
10.2.2 Choosing a Laptop
10.2.3 Cables
10.2.4 Camera Control Software
10.3 Networking Everything Together
10.4 Operating at Very Low Temperatures
Part III Image Processing
11 Deep-sky Image Processing
11.1 Processing Workflow
11.2 Calibration
11.2.1 Image Arithmetic
11.2.2 Components of a Raw Image
11.2.3 Master Darks, Flats, Flat Darks, and Bias Frames
11.2.4 Should Flats Be Binned or Smoothed?
11.2.5 Method 0: Just Lights and Darks
11.2.6 Method 1: Lights, Darks, Flats, and Flat Darks
11.2.7 Method 2: Lights, Darks, Flats, and Bias
11.2.8 Method 3: Lights, Darks, Flats, Flat Darks, and Bias
11.2.9 Scaling the Dark Frames
11.3 Cosmetic Correction
11.4 DeBayerization
11.5 Stacking
11.5.1 The Concept
11.5.2 Confusing Term: Integration
11.5.3 How Images Are Combined
11.6 Before We Stack, We Align
11.7 Nonlinear Stretching (Gamma Correction)
11.7.1 The Concept
11.7.2 Digital Development Processing (DDP)
11.8 Postprocessing
12 Workflow with Specific Software
12.1 Before We Start
12.1.1 Screen Stretch
12.1.2 Methods and ISO Settings
12.2 DeepSkyStacker
12.2.1 User Interface
12.2.2 Setting up
12.2.3 Calibrating and Stacking Images
12.2.4 Viewing and Selecting Images to Stack
12.2.5 Stretching
12.3 Nebulosity
12.3.1 User Interface
12.3.2 Basic File Editing
12.3.3 Calibration
12.3.4 DeBayering
12.3.5 Choosing Images to Stack
12.3.6 Aligning and Stacking Images
12.3.7 Stretching
12.4 MaxIm DL
12.4.1 User Interface
12.4.2 Basic File Editing
12.4.3 Choosing Images to Stack
12.4.4 Calibration and Stacking
12.4.5 Stretching
12.5 PixInsight
12.5.1 User Interface
12.5.2 Basic File Editing
12.5.3 Choosing Images to Stack
12.5.4 Raw or FITS?
12.5.5 Calibration and Stacking
12.5.6 Stacking (Integration) as a Separate Step
12.5.7 Stretching
12.5.8 PixInsight Workflow Summary
13 More Image Processing Techniques
13.1 Flattening the Background
13.1.1 The Concept
13.1.2 Subtract or Divide?
13.1.3 Linear or Gamma-corrected?
13.1.4 Nebulosity
13.1.5 MaxIm DL
13.1.6 PixInsight
13.2 Removing Noise
13.2.1 The Concept
13.2.2 Luminance vs. Chrominance
13.2.3 Linear or Gamma-corrected?
13.2.4 Nebulosity
13.2.5 MaxIm DL
13.2.6 PixInsight
13.3 Color Saturation
13.3.1 The Concept
13.3.2 Linear or Gamma-corrected?
13.3.3 Nebulosity
13.3.4 MaxIm DL
13.3.5 PixInsight
13.4 Masks
13.5 Who Moved? The Difference between Two Pictures
13.5.1 The Concept
13.5.2 Preparing the Images
13.5.3 PixInsight
13.5.4 MaxIm DL
13.5.5 Nebulosity
13.5.6 Photoshop
13.6 High Dynamic Range (HDR)
14 Sun, Moon, Eclipses, and Planets
14.1 Full-face Lunar and Solar Images
14.1.1 Optics and Field of View
14.1.2 Exposure
14.1.3 Tracking
14.1.4 Stacking
14.1.5 The Moon
14.1.6 The Sun
14.1.7 Eclipses, Solar and Lunar
14.2 High-resolution Video: How it’s Done
14.2.1 Overview of the Process
14.2.2 Acquiring the Images
14.2.3 How Long to Expose
14.2.4 Preparation and Stacking
14.2.5 Multiscale Sharpening
14.2.6 RGB Alignment
14.3 High-resolution Video: Technical Matters
14.3.1 Matching Focal Length to Pixel Size
14.3.2 Why High-resolution Video Works
Part IV Advanced Topics
15 Sensor Performance
15.1 Generations of DSLRs
15.2 How Sensors Work
15.2.1 Photoelectrons
15.2.2 CCD and CMOS Sensors
15.2.3 What We Don’t Know
15.3 Sensor Performance Basics
15.3.1 Pixel Size
15.3.2 Quantization and DNs (ADUs)
15.3.3 Bias (Offset), Dark Clipping, and Compression
15.3.4 Linearity
15.3.5 ISO Speed Adjustment
15.3.6 Gain
15.3.7 Color Balance (White Balance)
15.3.8 The Anti-aliasing Filter
15.4 Image Flaws
15.4.1 Bad Pixels
15.4.2 Pixel Inequality
15.4.3 Blooming
15.4.4 Amplifier Glow (Electroluminescence)
15.4.5 Cosmic Rays
15.4.6 Degradation with Age
15.5 Noise, in Detail
15.5.1 What Noise Is
15.5.2 Signal-to-noise Ratio (SNR)
15.5.3 Shot Noise
15.5.4 Read Noise
15.5.5 Dark Current (Thermal Noise)
15.5.6 Chrominance Noise
15.5.7 Effect of Stacking, Binning, and Downsampling
16 Testing Sensors
16.1 ISO Invariance
16.2 True ISO Speed
16.3 Dynamic Range
16.4 Noise Analysis
16.5 Quantum Efficiency and Other Parameters
16.6 Obtaining Data from Your Own Sensor
16.6.1 Overview
16.6.2 PixInsight
16.6.3 MaxIm DL
16.7 Specific Tests
16.7.1 Dynamic Range from One Light Frame and One Flat Dark
16.7.2 Read Noise in DN from Two Flat Darks or Bias Frames
16.7.3 Gain in DN/e−from a Pair of Generously Exposed Flats
16.7.4 Read Noise Measured in Electrons
16.8 Going Further
17 Spectral Response and Filter Modification
17.1 DSLR Spectral Response
17.2 Filter Modification
17.2.1 What Filter Modification Achieves
17.2.2 Is Filter Modification Necessary?
17.3 Filters to Cut Light Pollution
17.3.1 How Light Pollution can be Removed
17.3.2 Filters to Favor Nebulae
17.3.3 The Middle Ground
17.4 How Filters Are Made
17.4.1 Dye Filters
17.4.2 Interference Filters
17.4.3 Didymium Glass
17.4.4 Precautions
18 Tools for Astronomical Research
18.1 Star Maps
18.2 Simbad, Aladin, and VizieR
18.3 Case Study: An Unnamed Nebula in Monoceros
18.4 Plate Solving for Identification and Position
18.5 Case Study: Have I Discovered a Star Cluster?
18.6 Variable-star Photometry
18.6.1 Acquiring Images
18.6.2 Aperture Photometry
18.6.3 Photometry Software
18.6.4 Example: Light Curve of EH Librae
18.7 Asteroid or Nova?
18.8 Research Literature On Line
Part V Appendices
A Digital Processing of Film Images
B Exposure Tables
B.1 Sun
B.2 Moon
B.3 Planets
B.4 Deep-sky Objects
B.5 How Exposures are Calculated
Index
توضیحاتی در مورد کتاب به زبان اصلی :
Digital SLR cameras have made it easier than ever before to photograph the night sky. Whether you're a beginner, nature photographer, or serious astronomer, this is the definitive handbook to capturing the heavens. Starting with simple projects for beginners such as cameras on tripods, it then moves onto more advanced projects including telescope photography and methods of astronomical research. With 80% revised and updated material, this new edition covers nightscapes, eclipses, using cameras with sky trackers and telescopes, and tools for identifying celestial objects and investigating them scientifically. Image processing is discussed in detail, with worked examples from three popular software packages - Nebulosity, Maxlm DL, and PixInsight. Rather than taking a recipe-book approach, Covington explains how your equipment works as well as offering advice on many practical considerations, such as choice of set-up and the testing of lenses, making this a comprehensive guide for anyone involved in astrophotography.