Direct Nerve Stimulation for Induction of Sensation and Treatment of Phantom Limb Pain

دانلود کتاب Direct Nerve Stimulation for Induction of Sensation and Treatment of Phantom Limb Pain

49000 تومان موجود

کتاب تحریک مستقیم اعصاب برای القای حس و درمان درد فانتوم اندام نسخه زبان اصلی

دانلود کتاب تحریک مستقیم اعصاب برای القای حس و درمان درد فانتوم اندام بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 6


توضیحاتی در مورد کتاب Direct Nerve Stimulation for Induction of Sensation and Treatment of Phantom Limb Pain

نام کتاب : Direct Nerve Stimulation for Induction of Sensation and Treatment of Phantom Limb Pain
عنوان ترجمه شده به فارسی : تحریک مستقیم اعصاب برای القای حس و درمان درد فانتوم اندام
سری : River Publishers Series in Biomedical Engineering
نویسندگان :
ناشر : River Publishers
سال نشر : 2019
تعداد صفحات : 302
ISBN (شابک) : 877022076X , 9788770220767
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 96 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Half Title
Series Page
Title Page
Copyright Page
Table of Contents
Preface
Acknowledgements
List of Contributors
List of Figures
List of Tables
List of Abbreviations
Introduction
References
1: An Introduction to Phantom Limb Pain
1.1 Epidemiology and Etiology of Phenomena and Sequelae Associated with Amputation
1.1.1 Phantom Limb Sensation (PLS)
1.1.2 Phantom Limb Pain (PLP)
1.1.2.1 Triggers of PLP
1.1.3 Residual Limb (Stump) Pain (RLP)
1.1.4 Neuropathic Pain (NP)
1.1.5 Secondary Effects of PAP
1.2 The Proposed Loci and Mechanisms of PLP
1.2.1 Neurologic Locus of PLP
1.2.2 Predominant Mechanisms of the Peripheral Neurologic Locus
1.2.3 Predominant Mechanisms of the Spinal Neurologic Locus
1.2.4 Predominant Mechanisms of the Supraspinal Neurologic Locus
1.2.5 Predominant Mechanisms of the Cortical Neurologic Locus
1.2.5.1 Referred Sensation and Related Mechanisms
1.2.6 Psychological Aspects of Pain
1.3 “Phantom” Pain in Nonamputees – A Complicated Issue
1.4 Theories of Why PLP Presents
1.4.1 Gate Theory
1.4.2 Neuromatrix Theory
1.4.3 Maladaptive Cortical Plasticity
1.4.4 Pain Memory
1.4.5 Sensory Confusion
1.5 Measuring PLP
1.5.1 Psychophysical Measures of Pain
1.5.1.1 Self-Report Questionnaire
1.5.1.2 The Visual Analog Scale (VAS)
1.5.1.3 The Neuropathic Pain Symptom Inventory (NPSI)
1.5.1.4 The Profile of Mood States-Short Form (POMS-SF)
1.5.1.5 The Brief Pain Inventory-Interference Scale (BPI-IS)
1.5.1.6 Problems with Measuring PLP and Other Phantom Phenomena
1.5.2 Other Proposed Self-Report Measures of PLP
1.5.3 Measuring Cortical Reorganization
1.5.4 Pros and Cons of Different Measurement Approaches
1.6 Current Treatment/Pain Management Methods
1.6.1 Current Standard of Care
1.6.2 Medicinal Treatments
1.6.3 Nonmedicinal Treatments
1.6.3.1 Nerve and Stump Management
1.6.3.2 Electrical Stimulation
1.6.3.2.1 Considerations for FES of Peripheral Nerves
1.6.3.3 Imagery
References
2: Neurobiology of Pain
2.1 Physiology of Pain
2.1.1 Nociceptors and Nociceptive Fibers
2.1.2 Nociceptive Spinal Cord Circuits
2.1.3 Nociceptive Ascending Pathways
2.1.4 Descending Control of Pain
2.2 Neurobiology of Neuropathic Pain
2.2.1 Mechanisms of Neuropathic Pain
2.2.2 Nerve Injury-Induced Changes in Transduction
2.2.3 Central Sensitization
2.2.4 Low-threshold .. Fiber-Mediated Pain
2.2.5 Changes in Endogenous Inhibitory Pathways, Disinhibition, and Plasticity
2.2.6 Changes in Subcortical and Cortical Regions
References
3: The TIME Implantable Nerve Electrode
3.1 Introduction
3.2 Design and Development of TIME Devices
3.2.1 Process Technology to Manufacture TIMEs
3.2.2 Coating of Electrode Sites
3.2.3 Electrochemical Characterization In Vitro
3.2.4 Assembling of Connectors and Design Optimization for First Preclinical In Vivo Studies
3.3 From Flat to Corrugated Intrafascicular Electrodes
3.3.1 Design Considerations
3.3.2 Precision Machining Approach
3.3.3 Micromachining Approach
3.3.4 Precision Mechanics and Micromachining Hybrid Approach
3.3.5 Final Decision on Corrugation Processes for Various Nerve Diameters
3.4 From First Prototypes to Chronically Implantable Devices
3.4.1 Design Changes Towards TIME-3
3.4.2 Development of Helical Multistrand Cables
3.4.3 Connector Development
3.4.4 Final Assembly of the TIME-3 Implants
3.5 Life-time Estimation of TIMEs for Human Clinical Trials
3.5.1 Lifetime Estimation of Polyimide
3.5.2 Stability of Iridium Oxide as Stimulation Electrode Material
3.5.3 Mechanical Stability of Helically Wound Cables
3.6 Requirements and Steps to Transfer Preclinical Results in Devices for the First-in-Man Clinical Trial
3.6.1 Assessment of Previous Work and Pre-Existing Knowledge
3.6.2 Final Electrode Design and Fabrication Technology for Human Use
3.6.3 Quality Management System
3.6.3.1 Documentation of Device Development
3.6.3.2 Risk Management
3.6.3.3 Quality Management System for Device Manufacturing
3.7 Discussion
References
4: Modeling to Guide Implantable Electrode Design
4.1 Hybrid Model
4.2 Finite Elements Model
4.3 Neuron Fiber Model
4.4 Hybrid Model Solution
4.5 Model-Driven Electrode Design, Dimensions, and Number of Implants
4.6 Simulation of Biological Reaction to Electrode Optimization
4.7 Discussion
References
5: Biocompatibility of the TIME Implantable Nerve Electrode
5.1 Introduction
5.2 Biocompatibility of the TIME in the Rat Nerve Model
5.2.1 Biocompatibility of the Substrate and Components
5.2.2 Biocompatibility of the TIME Implanted in the Rat Nerve
5.2.3 Morphological Evaluation of the Implanted Nerves
5.3 Biocompatibility of the TIME in the Pig Nerve Model
5.3.1 Morphological Evaluation of the Implanted Nerves
5.4 Discussion
References
6: Selectivity of the TIME Implantable Nerve Electrode
6.1 Introduction
6.2 Evaluation of TIME in the Rat Sciatic Nerve Model
6.2.1 Stimulation Selectivity
6.2.1.1 Methods
6.2.1.2 Results
6.2.2 Recording Selectivity
6.2.2.1 Methods
6.2.2.2 Results
6.2.2.3 Discussion
6.3 Evaluation of TIME in the Pig Nerve Model
6.3.1 Acute Study of Stimulation Selectivity
6.3.1.1 Results
6.3.2 Chronic Study of Stimulation Selectivity
6.3.2.1 Follow-Up Methods
6.3.3 Results
6.3.4 Discussion
References
7: Synchronous Multichannel Stimulator with Embedded Safety Procedure to Perform 12-Poles TIME-3H 3D Stimulation
7.1 Introduction
7.2 Bench-Top Stimulator
7.2.1 Design of the Bench-Top Stimulator (Stim’ND)
7.2.1.1 From Specifications to Design of the Stimulator
7.2.1.2 The Stimulus Generator
7.2.1.3 The Stimulation Controller
7.2.2 Prototyping of the Stimulator
7.2.2.1 Prototyping of the Stimulus Generator
7.2.2.2 Prototyping of the Stimulation Controller
7.2.2.3 Prototypes of Stim’ND
7.3 Software Suite
7.3.1 SENIS Manager
7.3.2 Impedance Follow-up Software
7.4 Discussion
References
8: Computerized “Psychophysical Testing Platform” to Control and Evaluate Multichannel Electrical Stimulation-Based Sensory Feedback
8.1 Introduction
8.2 Sensory Feedback
8.3 Sensory Feedback for Phantom Limb Pain Treatment
8.4 Psychophysical Testing Platform Design Strategy and Principles
8.5 Software Components
8.6 Implementation of ISI Subsystem
8.7 Communication Between SEC and ISI
8.8 Use of the Psychophysical Testing Platform
8.9 Discussion
References
9: A New Treatment for Phantom Limb Pain Based on Restoration of Somatosensory Feedback Through Intraneural Electrical Stimulation
9.1 Introduction
9.2 Methods
9.2.1 Therapy
9.2.2 Assessment of Cortical Organization
9.2.2.1 EEG
9.2.2.2 SEP
9.3 Results
9.4 Discussion
References
10: Future Applications of the TIME
References
Index
About the Editor




پست ها تصادفی