توضیحاتی در مورد کتاب Dissipative Optical Solitons
نام کتاب : Dissipative Optical Solitons
عنوان ترجمه شده به فارسی : سالیتون های نوری پراکنده
سری : Springer Series in Optical Sciences, 238
نویسندگان : Mário F. S. Ferreira
ناشر : Springer
سال نشر : 2022
تعداد صفحات : 369
ISBN (شابک) : 3030974928 , 9783030974923
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 25 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Contents
Contributors
Chapter 1: Dissipative Optical Solitons: An Introduction
1.1 Solitary Waves
1.2 Solitons in Optical Fibers
1.3 The Complex Ginzburg-Landau Equation
1.4 Dissipative Solitons
1.5 Dissipative Soliton Molecules
1.6 Recent Experimental Results on Pulsating Dissipative Solitons
References
Chapter 2: Dissipative Solitons in Passively Mode-Locked Lasers
2.1 From Solitons to Dissipative Solitons in Ultrafast Lasers
2.1.1 Early Advances Toward Soliton Lasers
2.1.2 Reconsidering the Value of Dissipation in Lasers
2.2 Signatures of Dissipative Soliton Dynamics
2.3 Dissipative Soliton Molecules
2.3.1 The Wealth of Soliton Interaction Processes Within a Laser Cavity
2.3.2 From Stationary to Pulsating Soliton Molecules
2.4 Toward Incoherent Dissipative Solitons
2.5 Summary and Prospects
References
Chapter 3: Dissipative Soliton Buildup Dynamics
3.1 Introduction
3.2 Conventional Soliton Buildup Dynamics in an Anomalous Dispersion Fiber Laser
3.3 Dissipative Solitons Buildup Dynamics in a Normal Dispersion Fiber Laser
3.4 Dissipative Soliton Buildup Dynamics in a Bidirectional Fiber Laser with Net-Normal Dispersion
3.5 Buildup Dynamics of Dissipative Soliton Molecules
3.6 Conclusion
References
Chapter 4: Dissipative Soliton Resonance
4.1 Introduction
4.1.1 Numerical Approach: Propagation in an Oscillator with a Saturable Absorber (SA)
4.1.2 DSR Pulses in Passively Mode-Locked Fiber Lasers
4.1.2.1 Experimental Features of DSR Pulses
4.1.2.2 Control of Pulse Characteristics in Dual-Amplifier Configuration
4.2 Multi-pulsing Instabilities in DSR Regime
4.3 Chapter Summary
References
Chapter 5: Ultra-Short High-Amplitude Dissipative Solitons
5.1 Introduction
5.2 The Cubic-Quintic Complex Ginzburg-Landau Equation
5.3 Soliton Perturbation Theory
5.4 Method of Moments
5.5 Very-High Amplitude CGLE Solitons
5.6 Effects of Dispersion
5.7 Impact of Higher-Order Effects
5.7.1 Results of the Soliton Perturbation Theory
5.7.2 Linear Stability Analysis
5.7.3 Numerical Results
5.8 Conclusions
References
Chapter 6: Vector Dissipative Solitons
6.1 Introduction
6.2 DS Trapping in Fiber Lasers
6.3 Various Forms of VDSs
6.3.1 High-Order VDSs
6.3.2 Dark-Bright VDSs
6.3.3 Vector Soliton Molecules
6.3.4 Vector Noise-Like Pulses
6.4 Real-Time Dynamics of VDSs
6.4.1 Dispersive Fourier Transform Based Polarization Resolved Analysis
6.4.2 Real-Time Polarization Dynamics of VDSs
6.4.3 Pulsation of VDSs
6.5 Conclusions
References
Chapter 7: Dynamics of Pulsating Dissipative Solitons
7.1 Introduction
7.2 Theory of Pulsating Dissipative Solitons
7.2.1 Numerical Analysis of Pulsation Dynamics
7.2.2 Semi-Analytical Analysis of Pulsation Dynamics
7.3 Transient Behaviors of Pulsating Dissipative Solitons
7.3.1 Stationary Soliton
7.3.2 Single-Period Pulsating Soliton
7.3.3 Double-Period Pulsating Soliton
7.3.4 Periodic Soliton Explosion
7.3.5 Multi-Soliton Synchronous Pulsation
7.3.6 Pulsating Soliton Molecule
7.3.7 Multi-Soliton Asynchronous Pulsation
References
Chapter 8: Raman Dissipative Solitons
8.1 Introduction
8.2 Principle of Generation
8.3 Simulation
8.4 Brief Theory
8.5 Applications
References
Chapter 9: L-Band Wavelength Tunable Dissipative Soliton Fiber Laser
9.1 Introduction
9.2 Laser Design
9.3 Methods of Wavelength Tuning
9.3.1 Wavelength Tuning Based on Spectral Birefringence Filter with 45Tilted Fiber Grating
9.3.1.1 Laser Setup and Device Characteristics
9.3.1.2 Experimental Results and Discussions
9.3.2 Wavelength Tuning Based on Tunable Filter with Fiber Taper
9.3.2.1 Laser Setup and Device Characteristics
9.3.2.2 Experimental Results and Discussions
9.3.3 Wavelength Tuning Based on Cavity Loss Control with Commercial Mechanical VOA
9.3.3.1 Laser Setup and Device Characteristics
9.3.3.2 Experimental Results and Discussions
9.3.4 Wavelength Tuning Based on Cavity Loss Control with Taper-Type VOA
9.3.4.1 Laser Setup and Device Property
9.3.4.2 Experimental Results and Discussions
9.3.5 Comparison with Different Wavelength Tuning Methods
9.4 Conclusion
References
Chapter 10: Multiplexed Dissipative Soliton Fiber Lasers
10.1 Introduction
10.2 Bidirectional Multiplexed Dissipative Soliton Fiber Lasers
10.2.1 SESAM
10.2.2 CNT
10.2.3 Graphene
10.2.4 NPR
10.2.5 Hybrid
10.3 Wavelength Multiplexed Dissipative Soliton Fiber Lasers
10.4 Polarization Multiplexed Dissipative Soliton Fiber Lasers
10.5 Conclusion and Outlook
References
Chapter 11: Multi-soliton Complex in Nonlinear Cavities
11.1 Introduction
11.2 Multi-soliton Complex in Mode-Locked Fiber Lasers
11.2.1 Multi-soliton States in Mode-Locked Lasers and Their Interaction
11.2.1.1 Soliton Molecule
11.2.1.2 Pulse Bunching and Harmonic Mode-Locking
11.2.1.3 Other States
11.2.2 Rapid Measurements of Multi-soliton Dynamics in Mode-Locked Fiber Lasers
11.2.2.1 Multi-soliton in Spatiotemporal Mode-Locked Fiber Lasers
11.3 Mutli-soliton Complex in Microcavities
11.3.1 Basic Principle of Coherently Pumped Solitons
11.3.2 Multi-soliton States and Their Interactions in Microcavities
11.3.2.1 Dispersive Wave Emission in Microcavities
11.3.2.2 From Soliton Molecules to Soliton Crystals in Microcavities
11.3.2.3 Multi-soliton State Using Advanced Pumping Schemes
11.4 Summary and Discussions
References
Chapter 12: Dissipative Solitons in Microresonators
12.1 Introduction
12.2 Modeling
12.2.1 Higher-Order Dispersion
12.2.2 Raman Effect
12.3 Dispersion Engineered Cavity Dynamics
12.3.1 Capabilities of Dispersion Engineering
12.3.2 Advanced Control of Dissipative Soliton Dynamics
12.3.3 Novel Phenomena in Dispersion-Tailored Microring Resonators
12.4 Soliton Comb Generation Schemes
12.4.1 Frequency Scanning
12.4.2 Power Kicking
12.4.3 Thermal Tuning
12.4.4 Self-Injection Locking and Laser-Based Configurations
12.5 Nonlinear Dynamics of DKS
12.6 Applications
References
Chapter 13: Vector Vortex Solitons and Soliton Control in Vertical-Cavity Surface-Emitting Lasers
13.1 Introduction
13.2 Mechanism of Bistability in Lasers with Frequency-Selective Feedback
13.3 Vector Vortex Solitons
13.3.1 What Are Vector Vortex Beams?
13.3.2 Experimental Setup
13.3.3 Principle Observations
13.3.4 Complex Hysteresis Loops
13.3.5 Influencing Polarization Selection by Intra-Cavity Waveplates
13.3.6 Interpretation
13.4 Flip-Flop Operation of Laser Cavity Solitons
13.4.1 Soliton Control in Systems with and Without Holding Beams
13.4.2 Experimental Setup
13.4.3 Experimental Results
13.5 Conclusions and Outlook
References
Chapter 14: Discrete Solitons of the Ginzburg-Landau Equation
14.1 Introduction
14.2 The Model and Linear Dispersion Relation
14.3 Dissipative Solitons of the DGLE
14.4 Saturable Nonlinearity and MI Analysis
14.5 Exact Dissipative Discrete Soliton Solutions
14.6 Conclusion
References
Chapter 15: Noise-Like Pulses in Mode-Locked Fiber Lasers
15.1 Introduction
15.2 Examples of NLP Lasers
15.3 Mechanisms of NLP Formation
15.3.1 Effect of Cavity Birefringence
15.3.2 Soliton Collapse Due to Reverse Saturable Absorption
15.3.3 Raman-Driven NLP
15.3.4 NLP Formation in Amplifiers
15.4 Dynamics, Coherence and Stability of NLP Lasers
15.5 Applications of NLP Lasers
15.5.1 Metrology
15.5.2 Spectroscopy
15.5.3 Spectral Broadening and Supercontinuum Generation
15.5.4 Optical Coherence Tomography
15.5.5 Nonlinear Microscopy
15.6 Summary
References
Chapter 16: Dissipative Rogue Waves
16.1 Introduction
16.1.1 Rogue Waves in the Oceans
16.1.2 Introduction of Optical Rogue Waves
16.1.3 Real-Time Techniques for Observing Optical Rogue Waves
16.1.3.1 Dispersive-Fourier-Transform-Based Ultrafast Spectroscopy
16.1.3.2 Time Magnifier
16.2 Dissipative Rogue Waves
16.2.1 Rogue Waves in Dissipative Systems
16.2.2 Dissipative Rogue Waves in Ultrafast Lasers
16.2.3 Dissipative Rogue Waves in Microresonators
16.2.4 Dissipative Rogue Waves in Extended Systems
16.2.5 Optical Polarization Rogue Waves
16.3 Generating Mechanisms of Dissipative Rogue Waves
16.3.1 Two Interpretations
16.3.2 Are the Dissipative Rogue Waves Predictable?
References