Distributed Vision: From Simple Sensors to Sophisticated Combination Eyes

دانلود کتاب Distributed Vision: From Simple Sensors to Sophisticated Combination Eyes

36000 تومان موجود

کتاب دید توزیع شده: از حسگرهای ساده تا چشم های ترکیبی پیچیده نسخه زبان اصلی

دانلود کتاب دید توزیع شده: از حسگرهای ساده تا چشم های ترکیبی پیچیده بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 9


توضیحاتی در مورد کتاب Distributed Vision: From Simple Sensors to Sophisticated Combination Eyes

نام کتاب : Distributed Vision: From Simple Sensors to Sophisticated Combination Eyes
عنوان ترجمه شده به فارسی : دید توزیع شده: از حسگرهای ساده تا چشم های ترکیبی پیچیده
سری : Springer Series in Vision Research
نویسندگان : ,
ناشر : Springer
سال نشر : 2023
تعداد صفحات : 318 [319]
ISBN (شابک) : 3031232151 , 9783031232152
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 19 Mb



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Preface Contents Chapter 1: On Distributed Visual Systems 1.1 Introduction 1.2 From a Simple Light Sensor to a Sophisticated Eye 1.3 Sophisticated Vision Through a Distributed Visual System 1.4 Pros and Cons of Distributed Vision (Or “To Evolve a Centralized or Distributed Visual System”) 1.5 Survey of Diverse Distributed Visual Systems 1.5.1 Cnidarians 1.5.2 Echinoderms (Deuterostomes) 1.5.3 Polychaetes (Annelida) 1.5.4 Bivalvia (Mollusks) 1.5.5 Chitons (Mollusks) 1.5.6 Myriapoda (Arthropoda) 1.5.7 Pancrustacea (Arthropoda) 1.5.8 Arachnida (Arthropoda) 1.6 Summary/Conclusions References Chapter 2: Cnidarians: Diversity and Evolution of Cnidarian Visual Systems 2.1 Introduction 2.2 Cnidarian Phylogenetic Relationships 2.3 Cnidarian Photobiology 2.3.1 Cnidarian Opsins 2.3.2 Cnidarian Phototransduction and the Origins of Metazoan Visual Cascades 2.3.3 Cnidarian Photoreceptor Neurons and Distributed Sensory Systems 2.3.4 Cnidarian Eyes 2.3.5 Distributed Visual Systems in Cnidarians 2.4 Photosensory Behaviors in Cnidarian Larvae 2.4.1 Anthozoan Larvae 2.4.2 Medusozoan Larvae 2.5 Photosensory Behaviors in Adult Cnidarians 2.5.1 Anthozoan Adults 2.5.2 Medusozoan Adults 2.6 Future Directions References Chapter 3: Extraocular Vision in Echinoderms 3.1 Introduction 3.2 A Brief History of Extraocular Photoreception and Vision in Echinoderms 3.3 Visual Behavior 3.3.1 Orientation to Static Stimuli 3.3.2 Shadows and Looms 3.4 Physiology 3.4.1 Sea Urchins 3.4.2 Brittle Stars 3.5 Photoreceptors 3.5.1 Molecular Characteristics 3.5.2 Sea Urchin Opsins 3.5.3 Brittle Star Opsins 3.5.4 Opsins Across Echinodermata 3.5.5 Retinal Determinant Genes and Transcription Factors 3.6 Achieving Spatial Resolution: Proposed Mechanisms 3.6.1 Screening 3.6.2 Limits of Resolution 3.6.3 Optics 3.7 Nervous Systems and Processing 3.8 Evolution of Extraocular Vision 3.9 Future Research and Challenges References Chapter 4: Dispersed Vision in Starfish: A Collection of Semi-independent Arms 4.1 Introduction 4.2 The Starfish Eyes 4.2.1 Low Pass Filtering in Starfish Eyes 4.2.2 Opsins and Spectral Sensitivity 4.3 Behavioral Repertoire of Starfish 4.4 Light Guided Behaviors 4.4.1 Shadow Response and Extraocular Photoreception 4.4.2 Visually Guided Habitat Detection: Proof of Image Forming Eyes 4.4.3 Eye Movements and Active Vision 4.4.4 Other Starfish Behaviors Putatively Involving Vision 4.5 Multimodal Control of Behavior 4.6 Processing of the Visual Information 4.6.1 Structure of the Starfish CNS 4.6.2 The Ectoneural Part of the RNC 4.6.3 Supporting Cells 4.6.4 Specializations in A. planci: Neural Bulbs on the RNC 4.7 Concluding Remarks References Chapter 5: Distributed Visual Systems in Pteriomorphian Bivalves 5.1 Introduction 5.2 The Eyes of Pteriomorphian Bivalves 5.2.1 Pectinida: Mirror-Based Eyes 5.2.1.1 Phylogenetic Distribution and General Description 5.2.1.2 Morphology and Optics of Mirror-Based Eyes 5.2.1.3 Cellular and Molecular Components of Mirror-Based Eyes 5.2.1.4 Development of Mirror-Based Eyes 5.2.2 Limida: Invaginated Eyes 5.2.2.1 Phylogenetic Distribution and General Description 5.2.2.2 Morphology of Invaginated Eyes 5.2.2.3 Cellular and Molecular Components of Invaginated Eyes 5.2.3 Ostreida: Cap Eyespots 5.2.4 Arcida: Compound Eyes and Pigmented Cups 5.2.4.1 Phylogenetic Distribution and General Description 5.2.4.2 Morphology and Components of Compound Eyes 5.2.4.3 Morphology and Components of Pigmented Cups 5.3 Visual Ecology of Pteriomorphian Bivalves 5.3.1 Visual Ecology of Scallops (Pectinida) 5.3.1.1 Visual Performance of the Mirror-Based Eyes of Scallops 5.3.1.2 Visually Influenced Behaviors of Scallops 5.3.2 Visual Ecology of File Clams (Limida) 5.3.3 Visual Ecology of Oysters (Ostreida) 5.3.4 Visual Ecology of Ark Clams (Arcida) 5.4 Neuroanatomy and Visual Processing in Pteriomorphia 5.4.1 Neuroanatomy of Scallops (Pectinida) 5.4.1.1 Neuroanatomical Structures of Pectinids 5.4.1.2 Visual Processing in Scallops 5.4.2 Neuroanatomy of File Clams (Limida) 5.4.3 Neuroanatomy of Oysters (Osterida) 5.4.4 Neuroanatomy of Ark Clams (Arcida) 5.5 Evolution of Distributed Visual Systems in Pteriomorphia 5.5.1 Why Do Some Pteriomorphian Bivalves Have Eyes When Many Do Not? 5.5.2 Why Do Pteriomorphian Bivalves Have so Many Mantle Eyes? 5.5.3 Why Do the Eyes of Pteriomorphians Tend to Include Two Different Types of Photoreceptors? 5.5.4 How Do Pteriomorphian Bivalves Process Visual Information? 5.5.5 Future Directions References Chapter 6: Distributed Light-Sensing Systems in Chitons 6.1 Introduction to Chitons 6.2 Structure and Function of Light-Sensing Organs in Chitons 6.2.1 Aesthetes 6.2.2 Eyespots 6.2.3 Shell Eyes 6.2.4 Other Light-Sensing Organs in Chitons 6.3 Light-Influenced Behaviors in Chitons 6.3.1 Light-Influenced Behaviors Observed Across Chitons 6.3.2 Light-Influenced Behaviors in Chitons with Eyespots 6.3.3 Light-Influenced Behaviors in Chitons with Shell Eyes 6.4 Neuroanatomy of Chitons 6.5 Function and Evolution of Distributed Visual Systems in Chitons 6.5.1 How Do Light-Sensing Structures Relate to Light-Influenced Behaviors in Chitons? 6.5.2 Do Ecological Factors Help Explain Why Some Chitons Have Eyes When Many Do Not? 6.5.3 How Do Chitons Process Visual Information? 6.6 Future Directions References Chapter 7: The Visual System of Myriapoda 7.1 Introduction 7.2 Ommatidial Ground Pattern and Diverging Pathways 7.2.1 Lateral Eyes in Scutigeromorpha (Chilopoda) 7.2.2 Lateral Eyes (Cup-Shaped Ommatidia) in Pleurostigmophora (Chilopoda) 7.2.3 Lateral Eyes in Penicillata (Diplopoda) 7.2.4 Lateral Eyes in Chilognatha (Diplopoda) 7.3 Eye Development 7.4 Visual Neuropils Associated with Lateral Eyes 7.5 Intracerebral Photoreceptors 7.6 Visual Ecology, Physiology, and Behavior References Chapter 8: Insect Dorsal Ocelli: A Brief Overview 8.1 Introduction 8.2 Ocellar Structure and Neuronal Organisation 8.2.1 Ocellar Lenses 8.2.2 Field of View 8.2.3 Focal Plane 8.2.4 Internal Organisation 8.2.5 Neuronal Connectivity 8.3 Function 8.3.1 Phototactic Organs 8.3.2 Timing of Activity 8.3.3 Flight Stabilisation 8.3.4 Orientation 8.4 Conclusions References Chapter 9: The Cornucopia of Copepod Eyes: The Evolution of Extreme Visual System Novelty 9.1 Introduction 9.2 Visually Mediated Behaviors 9.3 Visual Function 9.4 Copepod Eye Morphology – Overview 9.4.1 Retinular Cells 9.4.2 Pigment Cells 9.4.3 Lenses and Other Light-Refracting Structures 9.4.4 Light-Reflecting Structures 9.4.5 Nonvisual Copepod Light-Sensing Structures: Gicklhorn’s Organ 9.5 Evolutionary Diversity of Copepod Eyes 9.5.1 Platycopioida (No Eyes) 9.5.2 Calanoida 9.5.2.1 Phaennidae (Reflector Type) 9.5.2.2 Aetideidae (Enlarged Type – Paired Ocelli) 9.5.2.3 Pontellidae (Y-Eye Type) 9.5.2.4 Candaciidae (Enlarged Type) 9.5.2.5 Centropagidae (Enlarged Type – Unpaired Ocellus) 9.5.2.6 Acartiidae (Enlarged Type – Whole Eye) 9.5.3 Misophrioida (No Eyes) 9.5.4 Gelyelloida (No Eyes) 9.5.5 Cyclopoida 9.5.5.1 Thaumatopsyllidae (Y-Eye Type) 9.5.5.2 Cyclopidae (Enlarged Type – Paired Ocelli) 9.5.5.3 Ergasilida (Sapphirina, Corycaeus, and Copilia) (Telescopic Type) 9.5.6 Canuelloida 9.5.7 Harpacticoida 9.5.7.1 Miraciidae (Telescopic Type) 9.5.8 Mormonilloida (No Eyes) 9.5.9 Monstrilloida 9.5.10 Siphonostomatoida 9.5.10.1 Caligidae (Telescopic Type) 9.5.10.2 Pennellidae (Enlarged – Paired Ocelli) 9.6 Copepod Opsin Diversity 9.7 Conclusions References Chapter 10: Distributed Vision in Spiders 10.1 Why Spiders? 10.2 Jumping Spiders: A High-Performing, Compact Distributed Visual System 10.2.1 Vision-Based Behavior of Jumping Spiders 10.2.1.1 Methods for Studying Vision-Based Behavior in Jumping Spiders 10.2.1.2 Behavioral Contexts in Which Jumping Spiders Use Vision 10.2.2 Modular Vision: Two Eye Types 10.2.2.1 Secondary Eyes of Jumping Spiders 10.2.2.2 Principal Eyes of Jumping Spiders 10.2.2.3 Division of Labor in Jumping Spider Eyes 10.2.3 Next Steps in the Study of Salticid Vision 10.3 Distributed Visual Systems Across the Araneae 10.3.1 Vision-Based Behavior Across Spiders 10.3.2 Origin and Evolution of Spider Eyes 10.3.2.1 Origin and Development 10.3.2.2 Eye Arrangement and Visual Fields 10.3.3 Structure and Optical Performance of Eyes 10.3.3.1 Corneal Lens Properties 10.3.3.2 Resolution 10.3.3.3 Sensitivity 10.3.3.4 Secondary Eye Tapeta 10.3.3.5 Trade-Off Between Resolution and Sensitivity 10.3.3.6 Specializations of Retinal Anatomy 10.3.4 Physiological Specializations of Photoreceptors 10.3.4.1 Opsin Evolution 10.3.4.2 Temporal Resolution 10.3.4.3 Spectral Sensitivity 10.3.4.4 Polarization Sensitivity 10.3.5 Control and Cooperation of Eyes 10.3.5.1 Movable Principal-Eye Retinas 10.3.5.2 Interaction of Eyes 10.3.6 Neurobiology of Vision 10.3.6.1 Evolution of Spider Brains 10.3.6.2 Principal- and Secondary-Eye Pathways 10.3.6.3 Variation in Neuromorphology 10.4 Conclusions and Future Directions References Index




پست ها تصادفی