Drug Delivery with Targeted Nanoparticles: In Vitro and In Vivo Evaluation Methods

دانلود کتاب Drug Delivery with Targeted Nanoparticles: In Vitro and In Vivo Evaluation Methods

35000 تومان موجود

کتاب تحویل دارو با نانوذرات هدفمند: روش‌های ارزیابی In Vitro و In Vivo نسخه زبان اصلی

دانلود کتاب تحویل دارو با نانوذرات هدفمند: روش‌های ارزیابی In Vitro و In Vivo بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 10


توضیحاتی در مورد کتاب Drug Delivery with Targeted Nanoparticles: In Vitro and In Vivo Evaluation Methods

نام کتاب : Drug Delivery with Targeted Nanoparticles: In Vitro and In Vivo Evaluation Methods
ویرایش : 1 ed.
عنوان ترجمه شده به فارسی : تحویل دارو با نانوذرات هدفمند: روش‌های ارزیابی In Vitro و In Vivo
سری :
نویسندگان : , ,
ناشر : Jenny Stanford Publishing
سال نشر : 2021
تعداد صفحات : 790 [789]
ISBN (شابک) : 9814877751 , 9789814877756
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 39 Mb



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.

توضیحاتی در مورد کتاب :




فناوری نانو این پتانسیل را دارد که هر بخش از زندگی ما را تغییر دهد. امروزه محصولات مبتنی بر فناوری نانو در بسیاری از زمینه ها مورد استفاده قرار می گیرند و یکی از مهم ترین حوزه ها دارورسانی است. سیستم‌های دارورسانی نانوذراتی نه تنها تحویل کنترل‌شده داروها و بهبود حلالیت دارو را فراهم می‌کنند، بلکه کارایی دارو را بهبود می‌بخشند و عوارض جانبی را از طریق مکانیسم‌های هدف‌گیری کاهش می‌دهند. با این حال، در مقایسه با سیستم‌های مرسوم دارورسانی، تعداد کمی از محصولات مبتنی بر نانوذرات در بازار وجود دارد و تقریباً همه آنها سیستم‌های غیر هدفمند یا فقط هدف‌دار غیرفعال هستند. علاوه بر این، به دست آوردن سیستم های نانوذرات هدف بسیار پیچیده است و به مکانیسم های ارزیابی زیادی نیاز دارد. این کتاب تولید، خصوصیات، تنظیم و سیستم‌های نانوذرات هدف‌گذاری شده در حال حاضر را در چارچوبی وسیع مورد بحث قرار می‌دهد. این یک نمای کلی از مشخصات نانوذرات هدف (i) در شرایط آزمایشگاهی، مانند اندازه ذرات، پایداری، چگالی لیگاند، و نوع ارائه می‌کند. (ب) رفتار in vivo برای مناطق مختلف هدف، مانند تومور، مغز، و واژن. و (iii) پیشرفت‌های فعلی در این زمینه، از جمله آزمایش‌های بالینی و فرآیندهای تنظیمی.


فهرست مطالب :


Cover Title Page Copyright Page Table of Contents Preface Chapter 1: Particle Size Determination of Targeted Nanoparticles 1.1: Introduction 1.2: Nanotechnology 1.3: Nanoparticles 1.4: Targeted Nanoparticles 1.5: Particle Size Distribution 1.6: Particle Size Determination Methods 1.6.1: Photon Correlation Spectroscopy/Dynamic Light Scattering 1.6.2: Laser Light Diffraction 1.6.3: X-Ray Diffraction Peak Broadening Analysis 1.6.4: Scanning Electron Microscopy 1.6.5: Transmission Electron Microscopy 1.6.6: Atomic Force Microscopy 1.6.7: Other Methods 1.7: Conclusion Chapter 2: Zeta Potential Determination of Targeted Nanoparticles 2.1: What Is Zeta Potential? 2.2: Determination Methods 2.2.1: Measuring the ZP by Electrophoresis 2.2.2: Tunable Resistive Pulse Sensing 2.3: Characteristics of the ZP 2.3.1: pH 2.3.2: Ionic Strength 2.3.3: Size Effect 2.3.3.1: Present charge 2.3.3.2: Conductivity 2.3.3.3: Concentration 2.3.3.4: Dilution 2.3.3.5: Stability 2.3.3.6: Reproducibility 2.3.3.7: Population 2.3.3.8: Pores and surface coating 2.3.3.9: Size 2.3.3.10: Temperature 2.4: Golden Standards and General Protocol for ZP Measurement 2.4.1: Reagents and Dispersants 2.4.2: Cleaning of the Zeta Cell or Cuvette 2.4.3: Equipment 2.4.4: Sample Preparation 2.4.5: Colored and Fluorescent Samples 2.4.6: Using Buffers with Metallic Ions 2.4.7: Measuring the ZP in a Cell Culture Medium 2.5: Effect of the ZP on Targeting 2.6 Conclusion Chapter 3: Stability of Targeted Nanoparticles 3.1: Introduction 3.2: Significance of Stability Assessment 3.3: Physical Stability 3.3.1: Particle Size and Size Distribution 3.3.2: Structure and Morphology 3.3.3: Surface Chemistry and Surface Charge 3.3.4: Particle Growth via Aggregation or Agglomeration 3.3.5: Reconstitution Properties 3.4: Chemical Stability 3.4.1: Amount of Drug and Degradation 3.4.2: Drug Release 3.4.3: Drug Leakage 3.4.4: Light Stability 3.4.5: Biological Activity 3.5: Conclusions Chapter 4: Impact of PEGylation on Targeted Nanoparticulate Delivery 4.1: Introduction 4.2: Passive Targeting 4.3: Active Targeting 4.4: Brain Targeting 4.5: Tumor Targeting Chapter 5: Ligands and Receptors for Targeted Delivery of Nanoparticles: Recent Updates and Challenges 5.1: Introduction 5.2: Approaches to Targeted Drug Delivery 5.2.1: Passive Targeting 5.2.2: Active Targeting 5.3: Receptors for Targeted Drug Delivery and Challenges 5.3.1: Receptor-Specific Challenges 5.3.1.1: Identification of receptors 5.3.1.2: Expression characteristics of receptors 5.3.1.3: Receptor accessibility 5.3.1.4: Cellular uptake of receptors 5.4: Ligand-Based Targeted Drug Delivery: Opportunities and Challenges 5.4.1: Selection of Ligand 5.4.2: Ligand Size 5.4.3: Conjugation of a Targeting Ligand with a Drug/Nanocarrier 5.4.4: Ligand Immunogenicity 5.5: Types and in vivo Fate of Targeted Nanoparticles 5.6: Future Prospects and Conclusion Chapter 6: Characterization of Biological Molecule–Loaded Nanostructures Using Circular Dichroism and Fourier Transform Infrared Spectroscopy 6.1: Introduction 6.2: Circular Dichroism 6.2.1: Sample Preparation and Measurement 6.2.2: Drug-Loaded Nanoparticle Characterization by CD 6.3: Fourier Transform Infrared Spectroscopy 6.3.1: Sample Preparation and Measurement 6.3.2: Application of FTIR Spectroscopy for Drug-Loaded Nanoparticle Characterization 6.4: Conclusion Chapter 7: Evaluation of Stimuli-Sensitive Nanoparticles in vitro 7.1: Introduction 7.2: Stimuli-Responsive Nanocarriers 7.3: Stimuli-Responsive Drug Release 7.3.1: Internal Stimuli 7.3.1.1: pH stimuli 7.3.1.2: Redox stimuli 7.3.1.3: Enzyme stimuli 7.3.2: External Stimuli 7.3.2.1: Light stimuli 7.3.2.2: Ultrasound stimuli 7.3.2.3: Thermal stimuli 7.3.2.4: Magnetic stimuli 7.3.3: Multistimulation 7.4: Evaluation of Stimuli Response in Cell Culture 7.4.1: Endolysosomal Escape 7.4.2: Cytotoxicity 7.5: Conclusion Chapter 8: Analytical Techniques for Characterization of Nanodrugs 8.1: Introduction 8.2: Analytical Characterization of Nanodrugs 8.2.1: Drug Encapsulation and Loading Capacity 8.2.1.1: Drug-loading content and drug-loading efficiency 8.2.1.2: Drug entrapment/incorporation efficiency 8.2.2: Techniques for Chemical Composition of Nanodrugs 8.2.2.1: Chromatographic techniques 8.2.2.2: Spectroscopic techniques 8.2.2.3: Calorimetric techniques 8.2.3: Purification Techniques of Nanodrugs 8.2.3.1: Filtration 8.2.3.2: Centrifugation 8.2.3.3: Dialysis 8.2.3.4: Diafiltration 8.2.3.5: Size-exclusion chromatography 8.2.3.6: Electrophoresis 8.3: Physicochemical Characterization of Nanodrugs 8.3.1: Size and Surface Morphology 8.3.1.1: Dynamic light scattering 8.3.1.2: Microscopic techniques 8.3.2: Surface Area 8.3.3: Surface Charge 8.4: In vitro Drug Release Test Methods for Nanodrugs 8.4.1: In vitro Drug Release 8.4.1.1: Sample and separate method 8.4.1.2: Continuous flow method 8.4.1.3: Dialysis membrane methods 8.4.1.4: Combination methods 8.5: Stability of Nanodrugs 8.5.1: Effect of Dosage Form on Stability 8.5.2: Stability Issues Affecting Nanomaterial Properties 8.5.2.1: Changes to particle size and size distribution 8.5.2.2: Changes to particle morphology/shape 8.5.2.3: Self-association 8.5.2.4: Sedimentation/creaming 8.5.2.5: Changes in the surface charge 8.5.2.6: Change in the dissolution/release rate of the active ingredient 8.5.2.7: Drug leakage from a nanomaterial carrier 8.5.2.8: Changes in the chemical composition 8.5.2.9: Interaction with the formulation or container closure 8.5.2.10: Changes in the solid state 8.5.2.11: Changes in microbial stability 8.5.3: Pharmaceutical Stability-Testing Conditions Chapter 9: Cytotoxicity and Biological Compatibility 9.1: Analysis of Cell Viability 9.1.1: Determination of Membrane Disruption as a Measure of Cell Death 9.1.2: Mitochondrial Activity Assessment for Viability Testing 9.1.3: Impedance-Based Viability Assays 9.2: Assays for Cellular Uptake of Nanoparticles 9.3: Drug Delivery Testing through Biological Barriers 9.3.1: In vitro Modeling of the Mucosal Barriers for Drug Delivery 9.3.2: Blood–Brain Barrier Models Chapter 10: Cellular Uptake and Transcytosis 10.1: Introduction 10.2: Cellular Uptake Mechanisms and Nanocarrier Uptake 10.2.1: Cellular Uptake Mechanisms 10.2.1.1: Phagocytosis 10.2.1.2: Pinocytosis 10.2.1.3 Receptor-mediated endocytosis 10.2.2: Cellular Internalization of Nanocarriers 10.2.2.1: Intracellular events 10.3: Effect of Physicochemical Properties of Nanocarriers on Cellular Uptake 10.3.1: Effect of Size and Polydispersity 10.3.2: Effect of Shape 10.3.3: Effect of Surface Charge and Surface Modification 10.3.4: Effect of Hydrophobicity 10.3.5: Effect of Elasticity 10.4: Evaluation of Cellular Uptake Pathways of Nanocarriers in Cell Culture 10.5: Transcytosis of Nanoparticles across Cellular Barriers 10.5.1: Cell Culture Models for Nanoparticle Barrier Permeability 10.5.1.1: Caco-2 cell line 10.5.1.2: HT-29 cell line 10.5.1.3: MDCK cell line 10.5.1.4: T84 cell line 10.5.1.5: 3D cell culture models 10.6 Conclusion Chapter 11: Evaluation of 3D Cell Culture Models for Efficacy Determination of Anticancer Nanotherapeutics 11.1: Introduction 11.2: Types of 3D Cell Culture Models 11.2.1: Scaffold-Based 3D Cell Culture Models 11.2.1.1: Polymeric hard scaffolds 11.2.1.2: Biological scaffolds 11.2.1.3: Micropatterned surface microplates 11.2.2: Scaffold-Free 3D Cell Culture Techniques 11.2.3: Microfluidic 3D Cell Culture 11.3: 3D Cell Culture as a Promising Tool in Anticancer Therapy Development 11.4: Utilization of 3D Cell Culture Models in Evaluationof Nanoparticles 11.5: Conclusion Chapter 12: In vitro and in vivo Blood–Brain Barrier Models for the Evaluation of Drug Transport with Targeted Nanoparticles 12.1: Introduction 12.1.1: The Blood–Brain Barrier 12.1.2: Transport Across the BBB 12.2: In vitro BBB Models 12.2.1: Monocultures 12.2.2: Co-cultures 12.3: In vivo BBB Models 12.4: Conclusion Chapter 13: Sterility Evaluation of Targeted Nanoparticles 13.1: Definitions and the Need for Testing 13.2: Short Review of Methodologies for Sterilization 13.2.1: Removal of Microorganisms 13.2.2: Removal of Endotoxins 13.3: Tests Available to Assess Sterility and Endotoxin Contamination 13.3.1: Cultivation of Fungal and Bacterial Organisms 13.3.2: In vivo and In vitro Endotoxin Testing 13.3.2.1: Rabbit pyrogen test 13.3.2.2: LAL-based assays 13.3.2.3: The rFC assay 13.3.2.4: Alternative assays 13.4: Interference of Nanomaterials in Endotoxin-Testing Systems 13.4.1: Description of Interference of Nanomaterials with in vitro Test Systems 13.4.2: Interference of Nanomaterials with in vitro Endotoxin Testing 13.4.2.1: Optical interference 13.4.2.2: Inhibition/enhancement 13.5: Generic Protocol to Test Interference of Nanomaterials in Endotoxin Tests 13.5.1: Test for Optical Interference 13.5.2: Test for Inhibition/Enhancement 13.6 Summary and Conclusion Chapter 14: Evaluation of Pharmacokinetics and Biodistribution of Targeted Nanoparticles 14.1: Introduction 14.2: Factors Affecting Pharmacokinetics and Biodistribution of Nanoparticles 14.2.1: Blood Circulation and the Reticuloendothelial System 14.2.2: Properties of Nanoparticles 14.2.2.1: Surface properties 14.2.2.2: Size 14.2.2.3: Composition 14.2.2.4: Shape 14.3: Pharmacokinetics of Nanoparticles 14.3.1: Absorption 14.3.2: Distribution 14.3.3: Metabolism 14.3.4: Excretion 14.4: Pharmacokinetic Evaluation of Nanoparticles 14.5: Physiologically Based Pharmacokinetic Modeling for Nanoparticles 14.5.1: PBPK Modeling for the Evaluation of Nanoparticle Biodistribution 14.5.2: PBPK Modeling in the Formulation Development of Nanoparticles 14.6 Conclusion Chapter 15: Evaluation of the in vivo Preclinical Toxicity of Targeted Nanoparticles 15.1: Introduction 15.2: The Effects of Physicochemical Properties of Nanomaterials on Toxicity 15.2.1: Important Exposure Routes 15.2.1.1: The respiratory system 15.2.1.2: Skin 15.2.1.3: The gastrointestinal tract 15.2.2: Nanotoxicity of Nanomaterials and NPs 15.2.2.1: Nanoparticle–DNA interaction 15.2.2.2: Effect on fetuses 15.2.2.3: Toxic effect on the immune system 15.3: Toxicity Studies 15.3.1: Acute Toxicity 15.3.1.1: Acute oral toxicity 15.3.1.2: Acute inhalation toxicity 15.3.1.3: Acute dermal toxicity 15.3.1.4: Acute dermal irritation/corrosion 15.3.2: Subacute Toxicity 15.3.2.1: Subacute oral toxicity 15.3.2.2: Subacute dermal toxicity 15.3.2.3: Subacute inhalation toxicity 15.3.3: Subchronic Toxicity 15.3.3.1: Subchronic oral toxicity 15.3.3.2: Subchronic dermal toxicity 15.3.3.3: Subchronic inhalation toxicity 15.3.4: Chronic Toxicity 15.3.4.1: Chronic toxicity studies 15.3.4.2: Combined chronic toxicity/carcinogenicity studies 15.3.5: Special Toxicities 15.3.5.1: Teratogenicity: prenataldevelopmental toxicity study 15.3.5.2: One-generation reproduction toxicity 15.3.5.3: Two-generation reproductiontoxicity 15.3.5.4: Carcinogenicity studies 15.3.5.5: Immunotoxicity 15.3.5.6: Lymph node proliferation assay Chapter 16: Transdermal Delivery of Targeted Nanoparticles and in vitro Evaluation 16.1: Introduction 16.2: Skin 16.2.1: Structure of the Skin and Barriers 16.2.1.1: Epidermis 16.2.1.2: Dermis 16.2.1.3: Hypodermis 16.2.1.4: Skin appendages 16.2.2: Ways of Drug Delivery through the Skin 16.2.2.1: Intracellular transition 16.2.2.2: Intercellular transition 16.2.2.3: Transition through skin appendages 16.2.3: Factors Affecting Transdermal Drug Delivery 16.2.3.1: Features that depend on the drug active substance 16.2.3.2: Features that depend on the drug delivery systems 16.2.3.3: Physiological properties 16.3: Transdermal Nanocarriers 16.4: Nanoparticles 16.4.1: Preparation Methods of Nanoparticles 16.4.1.1: Emulsion-solvent evaporation 16.4.1.2: Salting out method 16.4.1.3: Emulsions diffusion method 16.4.1.4: Nanoprecipitation 16.4.1.5: Polymerization 16.4.1.6: Dialysis 16.4.1.7: Coacervation or ionic gelation 16.4.1.8: Supercritical fluid technology 16.5: In vitro Studies 16.5.1: In vitro Characterization Studies 16.5.1.1: Size and zeta potential of nanoparticles 16.5.1.2: Drug release profile of nanoparticles 16.5.2: In vitro Cell Studies 16.5.2.1: Skin permeation studies 16.5.2.2: Skin penetration studies 16.6: Therapeutic Application of Transdermal Nanoparticles 16.7: Conclusion Chapter 17: In vivo and in vitro Evaluation of Nose-to-Brain Delivery of Nanoparticles 17.1: Introduction 17.2: Nasal Anatomy and Physiology 17.3: Nose-to-Brain Delivery 17.4: Nasal Delivery Systems 17.4.1: Colloidal Systems in the Aspect of Nasal Delivery 17.4.1.1: Liposomes 17.4.1.2: Cationic liposomes 17.4.1.3: Polymeric micelles 17.4.1.4: Dendrimers 17.4.2: Nanoparticular Systems in the Aspect of Nasal Delivery 17.4.2.1: Solid lipid nanoparticles 17.4.2.2: Polymeric nanoparticles 17.5: Methods for Determining Efficiency of Nose-to-Brain Delivery of Nanoparticles 17.5.1: In vitro Drug Release Methods 17.5.2: In vitro Permeation Studies 17.5.3: In vitro Toxicity Studies 17.5.4: Ex vivo Permeation and Histopathological Studies 17.5.5: In vivo Permeation Studies for Nasal Delivery of Nanoparticles 17.6: Conclusion Chapter 18: Evaluation of Targeted Nanoparticles for Ocular Delivery 18.1: Introduction 18.2: Pharmacokinetic and Bioavailability Studies 18.3: Biodistribution Studies 18.4: Tolerance Assays 18.5: Conclusion Chapter 19: Vaginally Applied Nanocarriers and Their Characterizations 19.1: Introduction 19.2: Novel Approaches for Vaginal Drug Delivery Systems 19.3: Nanotechnology-Based Vaginal System 19.4: Nanosized Dosage Forms Used for Vaginal Drug Delivery 19.4.1: Vesicular systems for Vaginal Drug Delivery 19.4.1.1: Liposomes 19.4.1.2: Niosomes, ethosomes, and transethosomes 19.4.2: Polymeric Nanoparticles 19.4.3: Microemulsions 19.4.4: Dendrimers 19.4.5: Nanofibers 19.4.6: Cyclodextrins 19.5: Conclusion Chapter 20: Oral Administration of Nanoparticles and Approaches for Design, Evaluation, and State of the Art 20.1: Introduction 20.2: Oral Drug Delivery 20.2.1: Gastrointestinal Tract and Related Challenges 20.2.2: Intestinal Absorption 20.3: Nanoparticulate Drug Delivery Systems for Oral Administration 20.3.1: Nanobased Strategies to Overcome the Challenges in Oral Drug Delivery 20.3.1.1: Improving drug solubility 20.3.1.2: Improving stability through the GIT 20.3.1.3: Improving adhesion and diffusion through the GIT 20.4: Oral Administrations of Nanoparticulate Drug Delivery Systems 20.4.1: Cancer Therapy 20.4.2: Protein and Peptide Drugs 20.4.3: Intestinal Targeting 20.4.3.1: Inflammatory bowel disease and colon targeting for colorectal cancer Chapter 21: Drug Resistance Mechanisms and Strategies to Overcome Drug Resistance with Nanoparticulate Systems 21.1: Introduction 21.2: Antimicrobial Resistance 21.2.3: Nanoparticles and AMR 21.2.3.1: Metallic nanoparticles 21.2.3.2: Polymeric nanoparticles 21.2.3.3: Nitric oxide–releasing nanoparticles 21.2.4: In vitro Antimicrobial Activity Methods 21.2.4.1: Disk diffusion 21.2.4.2: Dilution 21.2.4.3: The checkerboard method 21.2.4.3: Time–kill curves 21.2.1: Antibiotic Resistance 21.2.2: Development Mechanism of AMR 21.3: Anticancer Resistance 21.3.1: The Potential Mechanism of Anticancer Drug Resistance 21.3.1.1: Tumor heterogeneity and microenvironment 21.3.1.2: Mitochondria-mediated chemoresistance 21.3.1.3: Epithelial–mesenchymal transition 21.3.1.4: Altering drug targeting 21.3.1.5: Increased drug efflux 21.3.2: Nanoparticles in Overcoming Chemoresistance 21.3.2.1: Targeted drug delivery 21.3.2.2: Delivery of chemosensitizing molecules 21.3.2.3: Subcellular drug delivery 21.3.3: In vitro Chemosensitivity Assay 21.3.3.1: MTT assay 21.3.3.2: Clonogenic assay Chapter 22: Clinical Trials of Targeted Nanoparticulate Drug Delivery Systems 22.1: Introduction 22.2: Clinical Trials of Targeted Nanoparticulate Drug Delivery Systems 22.2.1: MM-302 22.2.2: ThermoDox 22.2.3: BIND-014 22.3: Conclusion Chapter 23: Evaluation of Targeted Mesoporous Silica Nanoparticles 23.1: Synthesis and Manufacturing 23.2: Biocompatibility 23.3: Functionalization 23.4: Targeting 23.4.1: Passive Targeting 23.4.1.1: Size and Shape 23.4.1.2: Surface charge and composition 23.4.2: Active Targeting 23.4.2.1: Antibodies 23.4.2.2: Proteins/peptides 23.4.2.3: Vitamins 23.4.2.4: Saccharides 23.5: Conclusion Chapter 24: Evaluation of Targeted Liposomes 24.1: Introduction 24.2: Classification of Liposomes 24.2.1: Based on Structure and Size 24.2.1.1: Unilamellar vesicles 24.2.1.2: Multilamellar vesicles 24.2.2: Based on the Drug Release Mechanism 24.3: Manufacturing of Liposomes 24.3.1: Composition 24.3.2: Direct Mechanical Agitation/Sonication 24.3.3: Thin-Film Hydration 24.3.4: Solvent Dispersion/Injection 24.3.5: Lyophilization of Liposomes 24.3.6: Sterilization Methods for Liposomes 24.4: Characterization of Liposomes 24.4.1: Size, Size Distribution, and Concentration 24.4.2: Determination of Encapsulated Molecules inside Liposomes 24.4.3: Physicochemical Characterization 24.4.3.1: Determination of lamellarity 24.4.3.2: Transition temperature 24.4.3.3: Surface charge 24.4.3.4: Zeta potential 24.4.4: Surface Morphology and Polymer Modification 24.4.5: Liposome–Drug Interaction 24.4.6: Determination of the Residual Organic Solvent 24.4.7: Regulatory Perspective for Liposome Registration Chapter 25: Prospects of Nanomedicine with Nanocrystal Technology 25.1: Nanonization Techniques and Application Areas 25.2: Nanoparticle Systems 25.2.1: Nanocrystal Definition 25.2.2: Properties of Nanocrystals 25.2.2.1: Increase in dissolution rate by surface area enlargement 25.2.2.2: Increase in saturation solubility 25.2.2.3: Increased adhesion to cell membranes 25.2.3: Production of Nanocrystals 25.2.3.1: Bottom up processes 25.2.3.2: Top-down processes 25.2.3.3: Other techniques for the production of drug nanocrystals 25.2.4: Advantages and Application Areas of Orally Applied Nanocrystalline Formulations Chapter 26: Characteristics of Marketed Nanopharmaceutics 26.1: Different Types of Nanocarriers and Their Main Advantages 26.2: From Laboratory to Market 26.3: Approved Nonopharmaceutics and Their Features 26.3.1: Liposomal-Based Nanopharmaceutics 26.3.1.1: Liposomal-based nanodrugs approved for anticancer treatment 26.3.1.2: Liposomal nanodrugs approved for antifungal treatment 26.3.1.3: Liposome-based drugs approved for analgesic treatment 26.3.1.4: Liposome-based drug approved for neovascularization treatment 26.3.1.5: Lipid-based drug approved for hereditary transthyretin-mediated amyloidosis treatment 26.3.2: Polymer-Based Nanopharmaceutics 26.3.3: Protein-Based Nanopharmaceutics 26.3.4: Micelle-Based Nanopharmaceutics 26.3.5: Crystalline-Based Nanopharmaceutics 26.3.6: Inorganic/Metallic Nanopharmaceutics 26.4: Nanopharmaceutical Market Size 26.5: Future Perspective Chapter 27: Regulatory Guidelines of the US Food and Drug Administration and the European Medicines Agency for Actively Targeted Nanomedicines 27.1: Introduction 27.2: The European Medicines Agency’s Scientific Guidelines for Actively Targeted Nanomedicines 27.2.1: Reflection Paper on Surface Coatings: General Issues for Consideration Regarding Parenteral Administration of Coated Nanomedicine Products 27.2.2: Data Requirements for Intravenous Liposomal Products Developed with Reference to an Innovator Liposomal Product 27.2.3: Development of Block-Copolymer-Micelle Medicinal Products 27.2.4: Data Requirements for Intravenous Iron-Based Nanocolloidal Products Developed with Reference to an Innovator Medicinal Product 27.3: The Food and Drug Administration’s Scientific Guidelines for Actively Targeted Nanomedicines 27.3.1: Considering whether an FDA-Regulated Product Involves the Application of Nanotechnology 27.3.2: Drug Products, Including Biological Products, That Contain Nanomaterials 27.3.2.1: Quality: chemistry, manufacturing, and controls 27.3.2.2: Nonclinical studies 27.3.2.3: Clinical development 27.3.3: Liposome Drug Products: Chemistry, Manufacturing, and Controls; Human Pharmacokinetics and Bioavailability; and Labeling Documentation 27.3.3.1: Chemistry, manufacturing, and controls 27.3.3.2: Human pharmacokinetics: Bioavailability and bioequivalence 27.3.3.3: Labeling 27.4: Conclusion Index

توضیحاتی در مورد کتاب به زبان اصلی :


Nanotechnology has the potential to change every part of our lives. Today, nanotechnology-based products are used in many areas, and one of the most important areas is drug delivery. Nanoparticulate drug delivery systems not only provide controlled delivery of drugs and improved drug solubility but also improve drug efficiency and reduce side effects via targeting mechanisms. However, compared to conventional drug delivery systems, few nanoparticle-based products are on the market and almost all are nontargeted or only passively targeted systems. In addition, obtaining targeted nanoparticle systems is quite complex and requires many evaluation mechanisms. This book discusses the production, characterization, regulation, and currently marketed targeted nanoparticle systems in a broad framework. It provides an overview of targeted nanoparticles’ (i) in vitro characterization, such as particle size, stability, ligand density, and type; (ii) in vivo behavior for different targeting areas, such as tumor, brain, and vagina; and (iii) current advances in this field, including clinical trials and regulation processes.




پست ها تصادفی