Earth's Magnetosphere: Formed by the Low-Latitude Boundary Layer

دانلود کتاب Earth's Magnetosphere: Formed by the Low-Latitude Boundary Layer

38000 تومان موجود

کتاب مگنتوسفر زمین: توسط لایه مرزی کم نور تشکیل شده است نسخه زبان اصلی

دانلود کتاب مگنتوسفر زمین: توسط لایه مرزی کم نور تشکیل شده است بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 2


توضیحاتی در مورد کتاب Earth's Magnetosphere: Formed by the Low-Latitude Boundary Layer

نام کتاب : Earth's Magnetosphere: Formed by the Low-Latitude Boundary Layer
ویرایش : 2
عنوان ترجمه شده به فارسی : مگنتوسفر زمین: توسط لایه مرزی کم نور تشکیل شده است
سری :
نویسندگان : ,
ناشر : Academic Press
سال نشر : 2020
تعداد صفحات : 628
ISBN (شابک) : 0128181605 , 9780128181607
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 18 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Front-Matter_2021_Earth-s-Magnetosphere
Front Matter
Copyright_2021_Earth-s-Magnetosphere
Copyright
Dedication_2021_Earth-s-Magnetosphere
Dedication
Preface-to-the-first-edition_2021_Earth-s-Magnetosphere
Preface to the first edition
References
Preface-to-the-second-edition_2021_Earth-s-Magnetosphere
Preface to the second edition
References
Acknowledgments_2021_Earth-s-Magnetosphere
Acknowledgments
1---Historical-introduction_2021_Earth-s-Magnetosphere
Historical introduction
Early history
International Geophysical Year
International Magnetospheric Study
Importance of three dimensions
ISEE spacecraft
Electric and magnetic fields in space
Effect of an electric field
Effect of a magnetic field
Nonelectromagnetic forces
Combined fields: E-cross-B drift
Particle motion in a magnetic field
Magnetic moment: First invariant
Bounce motion: Second invariant
Gradient B drift
Curvature drift
Collections of particles
Potential functions
Reference frames and frozen fields
Coronal expansion
Solar wind
Interplanetary magnetic field
Collisionless shock waves
De Hoffman-Teller frame
The quasiperpendicular shock
Energetic particles and foreshocks
Magnetosheath
Gas-dynamic model
Average properties
Magnetopause
Cause and effect at the magnetopause
Dungey model
De Hoffmann-Teller frame
Walén test
Energy balance
Reconnection rate
Axford-Hines model
Dynamic processes
Impulsive penetration
Plasma transfer event
Low-latitude boundary layer
Discovery of the radiation belt
Magnetic field lines and the L parameter
Pseudo-trapping regions
The ionosphere
The upper atmosphere
Photoionization
High-frequency wave propagation
Perpendicular propagation
Appleton-Hartree dispersion
Clemmow-Mullaly-Allis diagram
The ionosonde
Coherent and incoherent scatter radars
Polar caps
Polar cap during southward IMF
Polar cap during northward IMF
The aurora and substorms
Akasofu\'s study of substorm aurora
Iijima and Potemra: Field-aligned currents
Clauer and McPherron\'s current diversion
Geomagnetic indices
Closed field line in the dayside cleft
Impulsive injections by rocket
International conferences on substorms
Introduction to current and future missions
Cluster
THEMIS
MMS
RBSP
ICON
Discussion
Problems
References
2---Kirchhoff-s-laws_2021_Earth-s-Magnetosphere
Kirchhoff\'s laws
Introduction
Circuit analysis
Lumped constants R, C, and L
The resistor R
Circuit and wave approaches
The steady state
Electromotive force and sign of E.J
Capacitance C of an isolated conductor
Alternating current in capacitors
Capacitance of a sphere
The parallel-plate capacitor
The inductor
Power and power factors
Lumped electrodes in space
Equations of circuit analysis
Kirchhoff\'s voltage (loop) law
Kirchhoff\'s current (node) law
Wheatstone bridge
Series resonant circuit
Other circuit theorems
Superposition theorem
Thévenin\'s theorem
Tellegen\'s theorem
Radiation from oscillating dipoles
Magnetic dipole radiation
Radiation from a distribution of charges and currents
Discussion
Summary
Problems
References
3---Helmholtz-s-theorem_2021_Earth-s-Magnetosphere
Helmholtz\'s theorem
Introduction
Definition of a vector
Source point versus field point
Dirac delta function
Helmholtz\'s theorem
Irrotational source: Conservative
Nonconservative source: Solenoidal
Maxwell\'s equations
Confusion about nonconservative forces
Two sources for the electric field
Charge separation can never extinguish induction fields
Principle of superposition
Gauss\'s law
Gauge conditions
Lorentz gauge
Coulomb gauge
Electrodynamics
The fields of moving charges
Radiation from moving charges
The Liénard-Wiechert potentials
Physical explanation of radiation
Sporadic magnetopause beams
Particle simulation in 1D
Simulation results
Confirmation
Exceptional electron beam observation
Details of the electron beam
Evolution of the beam
Comparison to simulations
Other observations of energization
Counterstreaming particles
Inverse velocity dispersion bursts
Global substorm onset
Discussion
Simulations of plasma response
Electron holes and Debye shielding
Untrapped electrons
Broadband electrostatic noise
Another source of high energies
Summary
Parallel component
Transverse component
Global onset
Lightning strike!
Simulations agree with observations
Energization to very high energies
Problems
References
4---Magnetohydrodynamic-equations_2021_Earth-s-Magnetosphere
Magnetohydrodynamic equations
Chapter outline
Introduction
Basic magnetohydrodynamic equations
Equations for linear waves
Equation of state
Example of MHD for magnetospheric research
The four-field junction
Changes in the energy conversion
Recent advances in MHD simulations
Turbulent flow
Buoyancy waves
Discussion
Magnetospheric convection
The convection electric field
Summary
Problems
References
5---Poynting-s-energy-conservation-theorem_2021_Earth-s-Magnetosphere
Poynting\'s energy conservation theorem
Chapter outline
Introduction
The electric displacement: D field
The magnetic field H
Poynting\'s theorem
The steady state
Electric energy
Magnetic energy
Tangential discontinuity
Rotational discontinuity
Discussion
Concept of a plasma transfer event
Plasma transfer event seen by Cluster
Three systems
3D reconnection
Magnetic topology
Properties of 3D reconnection
Scientific paradigms
Summary
Problems
References
6---Magnetopause_2021_Earth-s-Magnetosphere
Magnetopause
Introduction
Solar wind-magnetopause interaction
Superposed epoch analysis
Magnetic field rotation on magnetopause
Magnetic pressure
Perpendicular plasma pressure
Total pressure
Plasma β
Magnetic field normal to magnetopause
Plasma velocity tangential to magnetopause
Plasma depletion in the transition layer
Plasma bulk velocity normal to magnetopause
Dawn/dusk asymmetries
ISEE observations
Profile of magnetopause electron temperature
Dynamo versus electrical load
One detailed crossing
Impulsive penetration
Plasma entry across the magnetopause
Relevant plasma experiments
Plasma weakly diamagnetic (β1)
Plasma strongly diamagnetic (β1)
Simulations of plasma beams
Draping of magnetosheath plasma
Transient auroral event
Flux transfer event
Cluster observations of plasma transfer
CIS ion data
WHISPER plasma emissions
PEACE electron data
EFW data
Plasma transfer event
Fundamentals of a plasma transfer event
Localized pressure pulse
Response of the plasma: Bn=0
Response of the plasma: Bn finite
Tangential motion
Skimming orbit of GEOTAIL
Overview of Comprehensive Plasma Instrumentation data
Transition diagram
Inward and outward exists
Electric field at high sampling rates
MMS observations at the magnetopause
Mission details
Observations
Discussion
Electrostatic and induction fields
The dynamo
Agreement with Walén relation
Response of the plasma: Bn finite
Bohm diffusion
Diversion of the magnetosheath flow
Change of magnetic interconnection
Plasma flow
What is really happening?
Summary
Problems
References
7---High-altitude-cusps_2021_Earth-s-Magnetosphere
High-altitude cusps
Introduction
The magnetosheath
The turbulent magnetosheath
The cusp throat
Mixing of solar wind and magnetospheric plasmas
Statistical properties of the plasma
Transfer events
Cusp energetic particles
Polar data
Cluster observations
ISEE-1 and ISEE-2 observations
Exterior cusp
Shell degeneracy
Diamagnetic cavities
Resonant acceleration in diamagnetic cavities
Discussion
Summary
Transfer events
Cusp energetic particles
New energetic particle source
Problems
References
8---Inner-magnetosphere_2021_Earth-s-Magnetosphere
Inner magnetosphere
Introduction
The radiation belts take shape
Electron acceleration mechanisms
New measurements needed
Radiation belts
Emerging consensus
January 1997 storm
October 2013 storm
Implications
Transient penetration
Transient auroral event
Plasma transfer event
Ionospheric outflow and coupling
Winter polar ionosphere
Soft particle data
Optical emissions
Particle-optical comparisons
Particle-ionosphere comparisons
Bottomside measurements
Summary of dark winter polar ionosphere
TORDO UNO ion streak
Theta aurora
Four-cell convection pattern
Summary
Problems
References
9---Low-latitude-boundary-layer_2021_Earth-s-Magnetosphere
Low-latitude boundary layer
Introduction
Direct support for the low-latitude boundary layer
Comprehensive investigation of low-latitude boundary layer
Superposed epoch analysis
Low versus high magnetic shear
Dawn side versus dusk side
Wave spectra and diffusion
Studies with better resolution
Cusp passage of DE-2
Cusp passage of Astrid-2
Plasma transfer event
Identification of cusp and cleft/low-latitude boundary layer
Qualitative description of low-latitude boundary layer
Sonnerup\'s tutorial
Alternative description
Topology of the magnetosphere
ISEE observations
Tailward-moving vortex pattern
Average conditions in the distant tail
Analysis of Bz data from ISEE-3
Analysis for Bz for the whole year 1983
Massive flow in the boundary layer
Observational summary of the low-latitude boundary layer
Study with southward interplanetary magnetic field
Open geomagnetic field lines
Ionospheric convection
Poleward moving auroral forms
Polar cap during northward interplanetary magnetic field
November 2004 storm
Surface singularities
Magnetosheath flow is in control
Penetration of interplanetary electric field into magnetosphere
A study with northward interplanetary magnetic field
Defense Meteorological Satellite Program particle and ionospheric data
Aurora observations
Ionospheric tomography
Synopsis of daytime auroras
Discussion
Polar rain
Relativistic particle access
Velocity-dispersed ion structures
ULF wave activity
Summary
Magnetosheath flow is in control
Low-latitude boundary layer
Problems
References
10---Driving-the-plasma-sheet_2021_Earth-s-Magnetosphere
Driving the plasma sheet
Introduction
Transfer of plasma and electric field
Plasma sheet from low-altitude observations
Plasma sheet observations
Direct support for the low-latitude boundary layer
The Rice Convection Model
Plasma irreversibly heated
Other fluid models
Particle dynamics
Conservation of entropy
Effect of collisions
Raising and lowering mirror points
Curvature drift
Energy of auroral particles
Thin current sheets
The curvature vector
Auroral current circuit
The primary circuit
Current thinning event
Quasisteady state of growth
Aurora study with EISCAT
Second low-altitude generator
Key results from SuperDARN, CANOPUS
Observations
Conclusions about current buildup
Large-scale flow dynamics
Auroral fading
Proton aurora
Growth-phase auroras
Average trend at onset
Discussion
Current thinning event
Summary
Problems
References
11---Magnetospheric-substorms_2021_Earth-s-Magnetosphere
Magnetospheric substorms
Introduction
Statistical description of the substorm
Data
Three-step normalization technique
Normalize substorm time
Normalize the magnetic local time position
Normalize the latitudinal extent
Effectiveness of normalization
A clear example of expansion
Six key positions
Application of the results
Validation of the Akasofu model
Two models as apparent alternatives
Kinetic Alfvén waves and auroral beads
Substorm disturbance onsets
Auroral onset brightenings
Two classes of auroral power
Action versus reaction
Substorm transfer event
Electromotive force to tap magnetic energy
The first response
Negative and positive meanders
Ion dynamics
Critical cyclotron turn
Bifurcated neutral sheet current
Plasma conditions in a thin sheet
Westward traveling surge
Substorm current diversion
THEMIS All Sky Imager observations
Auroral kilometric radiation
Bursty bulk flows
Auroral streamers
Bubble in plasma sheet
Transverse E enhancement
Auroral omega bands
Some other questions
Observations of particle acceleration
Acceleration of cold plasma
Discharge
Resonant diamagnetic acceleration
Space weather implications
The Saint Patrick\'s Day Storm of 2015
Discussion
The real electric field
Three dimensions
Cause versus effect
Summary
Problems
References
12---Epilogue_2021_Earth-s-Magnetosphere
Epilogue
Introduction
Magnetic reconnection
Particle acceleration
Plasma-neutral interactions
Magnetic dynamos
Main arguments in this book
Chapter 1: Historical introduction
Chapter 2: Kirchhoff\'s laws
Chapter 3: Helmholtz\'s theorem
Chapter 4: Magnetohydrodynamic equations
Chapter 5: Poynting\'s energy conservation theorem
Chapter 6: Magnetopause
Chapter 7: High-altitude cusps
Chapter 8: Inner magnetosphere
Chapter 9: Low-latitude boundary layer
Chapter 10: Driving the plasma sheet
Chapter 11: Magnetospheric substorms
Substorm transfer event
Four fundamental processes reexamined
Magnetic reconnection
Particle acceleration
Plasma-neutral interactions
Magnetic dynamos
Final summary
Reminders
Nine new ideas
References
Index_2021_Earth-s-Magnetosphere
Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
Z




پست ها تصادفی