توضیحاتی در مورد کتاب Economics of Power Systems: Fundamentals for Sustainable Energy
نام کتاب : Economics of Power Systems: Fundamentals for Sustainable Energy
عنوان ترجمه شده به فارسی : اقتصاد سیستم های قدرت: مبانی انرژی پایدار
سری : Springer Texts in Business and Economics
نویسندگان : Christoph Weber, Dominik Möst, Wolf Fichtner
ناشر : Springer
سال نشر : 2022
تعداد صفحات : 438
[439]
ISBN (شابک) : 3030977692 , 9783030977696
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 7 Mb
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
به منظور مدیریت انتقال به سمت سیستم برق پایدار آینده ، درک عمیق از محرک های کلیدی فناوری ، اقتصادی ، زیست محیطی و اجتماعی برای بازارهای برق مورد نیاز است. مناسب برای دانشجویان پیشرفته کارشناسی و کارشناسی ارشد ، این کتاب درسی مروری بر این رانندگان ارائه می دهد و خوانندگان را با مدل های اصلی اقتصادی و شواهد تجربی برای مطالعه بازارهای برق و سیستم ها آشنا می کند. در مورد تولید برق ، تقاضا ، حمل و نقل و ذخیره و همچنین اصول بازارهای شبکه و برق در اروپا می آموزد. این کتاب با معرفی آنها به مدل های پیشرفته از تحقیقات و اقتصاد عملیات ، پایه ای محکم برای بینش های تحلیلی و مدل سازی عددی فراهم می کند. علاوه بر این ، این کتاب در مورد ابزارهای سیاست و گزینه های طراحی برای تنظیم بازار برق و توسعه سیستم پایدار و همچنین چالش های فعلی برای سیستم های انرژی هوشمند بحث می کند.
فهرست مطالب :
Preface
Contents
Symbols
List of Figures
List of Tables
1 Introduction
Reference
2 Fundamentals of Energy and Power Systems
2.1 Physical and Engineering Basics
2.1.1 Energy and Power and Thermodynamic Systems
2.1.2 Laws of Thermodynamics
2.1.3 Thermodynamic State Variables, Energy Transformation and Carnot Efficiency
2.2 Energy, Economy and Society
2.3 Challenges of Resource Availability and Environmental Damage
2.3.1 Resource Availability
2.3.2 Environmental Damage
2.4 Energy Transformation Chain and Energy Balances
2.4.1 Energy Terms and Energy Transformation Chain
2.4.2 Energy Balances
2.4.3 Energy Flowchart
2.5 Particularities of Electricity and the Electricity Sector
2.6 Further Reading
2.7 Self-check of Knowledge and Understanding and Exercises
References
3 Energy Demand
3.1 Electricity Demand
3.1.1 Basics
3.1.2 Applications on the Demand Side
3.1.3 Load Profiles
3.1.4 Demand-Side Management
3.1.5 Projecting Electricity Demand
3.1.6 Electricity Tariffs
3.2 Heat Demand
3.3 Further Reading
3.4 Self-check of Knowledge and Exercises
References
4 Electricity Generation and Operational Planning
4.1 Conventional Generation Technologies
4.1.1 Fossil-Fired Technologies
4.1.1.1 Combustion Process
4.1.1.2 Steam Cycle and Steam Turbines
4.1.1.3 Joule Cycle and the Gas Turbine
4.1.1.4 Combined Cycle Gas Turbine
4.1.1.5 Motor Engine
4.1.1.6 Electricity Generators
4.1.1.7 Fuel Cells
4.1.1.8 Large-Scale Fossil-Fired Power Plants
4.1.2 Nuclear Energy
4.1.2.1 Power Plant Technologies
4.1.2.2 Environmental Effects and Risks of Nuclear Technologies
4.1.3 Combined Heat and Power Generation (CHP)
4.1.3.1 Large-Scale Cogeneration
4.1.3.2 Medium- and Small-Scale Cogeneration
4.1.3.3 CHP Based on Motor Engines and Further Technologies
4.1.3.4 Heat Demand and Combined Heat and Power Plants
4.2 Renewable Generation Technologies
4.2.1 Hydropower
4.2.1.1 Types of Hydropower and Power Calculation
4.2.1.2 Turbine Types
4.2.1.3 Multipurpose Use of Hydropower
4.2.2 Wind Power
4.2.3 Solar Energy
4.2.3.1 Solar Thermal Power Plants
4.2.3.2 Photovoltaics
4.2.4 Bioenergy
4.2.5 Other Renewable Energy Technologies
4.2.5.1 Geothermal Energy
4.2.5.2 Wave Energy
4.3 Key Characteristics of Electricity Generation Technologies
4.3.1 Technical and Environmental Characteristics
4.3.2 Economic Characteristics
4.3.3 Levelized Cost of Electricity
4.4 Scheduling Electricity Generation—The Unit Commitment and Dispatch Problem
4.4.1 Day-Ahead Operational Planning
4.4.1.1 Simple Scheduling of Power Plants: Merit-Order Approach
4.4.1.2 Simple Scheduling of Reservoir Power Plants
4.4.1.3 General Model of Short-Term Power Plant Scheduling
4.4.2 From Day-to-Day Planning to Portfolio Management
4.5 Further Reading
4.6 Self-check of Knowledge and Exercises
References
5 Electricity Transport and Storage
5.1 Electricity Transmission and Distribution
5.1.1 Basics of Electricity Networks
5.1.1.1 DC Versus AC in Electricity Transmission
5.1.1.2 Structure of Current Electricity Networks
5.1.2 Physical Principles of Power Flow
5.1.2.1 Fundamental Physical Laws
5.1.2.2 Stationary Power Flow Computations for Symmetric Three-Phase Systems
5.1.2.3 Linear Approximations for Stationary Power Flow
5.1.3 Electricity Network Components
5.1.3.1 Power Lines
High-Voltage Alternating Current (HVAC)
High-Voltage Direct Current (HVDC)
5.1.3.2 Flexible AC Transmission Components
5.1.4 System Operation
5.1.4.1 System Security
N-1 Security
Reliability
5.1.4.2 Ancillary Services for Secure System Operation
5.2 Storage
5.2.1 Basics
5.2.2 Technologies
5.3 Further Reading
5.4 Self-check of Knowledge and Exercises
References
6 Regulation: Grids and Environment
6.1 Grid Regulation
6.1.1 Fundamentals of Electricity Market Regulation
6.1.2 Non-discriminatory Grid Access, Unbundling and Price Regulation
6.1.2.1 Non-discriminatory Grid Access
6.1.2.2 Variants of Unbundling
6.1.2.3 Price Regulation: Cost-of-Service Versus Incentive Regulation
6.1.3 Practical Challenges of Performance-Based Regulation
6.1.3.1 Heterogeneity of Network Operators and Benchmarking
6.1.3.2 Cost Base for Regulation
6.1.3.3 Quality Regulation
6.1.4 Principles of Network Pricing
6.1.4.1 Ramsey Pricing
6.1.4.2 Capacity, Energy and Other Prices for Grid Usage
6.1.4.3 Application: Ramsey Pricing in an Electrical Network
6.1.4.4 Application: Network Tariffication in Low-Voltage Grids
6.1.4.5 Implications for Practical Grid Tariff Structures
6.2 Environmental Effects and Environmental Policy
6.2.1 Externalities
6.2.2 Emissions, Environmental Impacts and Emission Reduction Technologies
6.2.2.1 Emissions from Burning Fossil Fuels
6.2.2.2 Environmental Impacts
6.2.2.3 Emission Reduction Technologies
6.2.2.4 Excursus: Life Cycle Assessment
6.2.3 Policy Instruments
6.2.3.1 First-Best and Second-Best Instruments
6.2.3.2 The Implementation of Emissions Trading
6.2.4 Limiting Climate Change
6.2.4.1 The EU Emissions Trading System (EU ETS)
6.2.4.2 Renewable Support Schemes
6.2.4.3 Interference Between Emission Trading and Renewable Support
6.3 Further Reading
6.4 Self-check of Knowledge and Exercises
References
7 Simple Electricity Market Equilibrium Models
7.1 Short-Term Market Equilibrium Without Transmission Constraints
7.1.1 Simple, Graphical Approach: Merit-Order Model
7.1.2 Assumptions Underlying the Concept of Perfect Competition
7.1.3 Formal Model
7.1.4 Application
7.2 Short-Term Market Equilibrium with Two Grid Nodes
7.2.1 Graphical Model
7.2.2 Formal Model
7.3 Optimal Power Flow Model and Nodal Pricing
7.4 Long-Term Market Equilibrium
7.4.1 Formal Model
7.4.2 Graphical Model
7.4.3 Application
7.5 Further Reading
7.6 Self-check of Knowledge and Exercises
References
8 Markets: Organisation, Trading and Efficiency
8.1 Organisation of the Electricity Sector
8.2 Basics of Electricity Trading
8.3 Key Market Design Choices
8.4 Balancing Groups: Coordination Between Electricity Trading and Grid Operation
8.5 Information Efficiency: Links Between Spot and Future Markets
8.5.1 Law of One Price
8.5.2 Link Between Spot and Futures Markets
8.5.3 Efficient Market Hypothesis and Link Between Spot and Future Prices
8.5.4 Implications of Storability
8.5.5 Implications of Limited Storability
8.6 Future and Option Payoffs and Hedging of Physical Positions
8.7 Further Reading
8.8 Self-check of Knowledge and Exercises
References
9 Imperfect Competition and Market Power
9.1 Indicators and Analyses of Market Power
9.1.1 Indicators and Analyses of Market Structure
9.1.2 Indicators and Analyses of Market Conduct
9.1.3 Indicators and Analyses of Market Results
9.2 Simple Models of Imperfect Competition in Wholesale Markets
9.3 Applications of Models of Imperfect Competition to Power Systems
9.4 Imperfect Competition in Retail Markets: Modelling Customer Switching Behaviour
9.4.1 Basic Model with One Retail Market Segment
9.4.2 Extension to Several Retail Segments
9.5 Workable Competition and Market Monitoring
9.6 Further Reading
9.7 Self-check of Knowledge and Exercises
References
10 Electricity Markets in Europe
10.1 Spot Markets
10.1.1 Day-Ahead Markets
10.1.2 Intraday Markets
10.1.3 Cross-Border Trading
10.2 Derivative Markets
10.3 Management of Reserves
10.4 Provision of Other System Services
10.5 Capacity Mechanisms
10.6 Congestion Management in Electricity Markets
10.6.1 Capacity Allocation Methods
10.6.2 Congestion Alleviation and Redispatch
10.7 Retail Markets
10.7.1 Retail Contract Types
10.7.2 Competition on Retail Markets and Retail Prices
10.7.3 Energy Poverty
10.7.4 Self-supply, Grid Parity and Level of Autonomy
10.8 Markets in Europe Versus North America
10.9 Further Reading
10.10 Self-check of Knowledge and Exercises
References
11 Valuing Flexibilities in Power Systems as Optionalities
11.1 Prices as Stochastic Processes
11.2 Hourly Price Forward Curves to Link Future and Spot Prices
11.3 Valuing Simple Options on a Stochastic Spot Price
11.4 Analytical Approaches for Option Valuation: The Black–Scholes Model
11.5 Merits and Limits of the Black–Scholes Model for Electricity Market Analyses
11.6 Thermal and Hydropower Plants as Real Options
11.7 Application: HPFC and Parsimonious Real Option Valuation for Thermal Power Plants
11.8 Challenge: From Asset to System Perspective
11.9 Further Reading
11.10 Self-check of Knowledge and Exercises
References
12 Moving Towards Sustainable Electricity Systems
12.1 Challenges in Decarbonisation
12.2 Challenges in Balancing Supply and Demand
12.2.1 Balancing Energy Production and Demand
12.2.2 Balancing Short-Term Fluctuations
12.3 Challenges for Grid Operation and Development
12.3.1 Grid Extension and Reinforcement Needs
12.3.2 Congestion Management and Market Design
12.3.3 Voltage Control and Reactive Power Management
12.4 Challenges in Prosumer Integration and Network Tariffication
12.5 Prospects for Sustainable Energy Systems
12.6 Further Reading
12.7 Self-check of Knowledge
References
Index
توضیحاتی در مورد کتاب به زبان اصلی :
In order to manage the transition towards a sustainable future electricity system, an in-depth understanding of the key technological, economic, environmental and societal drivers for electricity markets is required. Suitable for advanced undergraduate and graduate students, this textbook provides an overview of these drivers and introduces readers to major economic models and empirical evidence for the study of electricity markets and systems.
Readers will learn about electricity generation, demand, transport, and storage, as well as the fundamentals of grid and electricity markets in Europe. By introducing them to state-of-the-art models from operations research and economics, the book provides a solid basis for analytical insights and numerical modeling. Furthermore, the book discusses the policy instruments and design choices for electricity market regulation and sustainable power system development, as well as the current challenges for smart energy systems.