Electrical Steels: Volume 2: Performance and applications

دانلود کتاب Electrical Steels: Volume 2: Performance and applications

35000 تومان موجود

کتاب فولادهای برقی: جلد 2: عملکرد و برنامه ها نسخه زبان اصلی

دانلود کتاب فولادهای برقی: جلد 2: عملکرد و برنامه ها بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 11


توضیحاتی در مورد کتاب Electrical Steels: Volume 2: Performance and applications

نام کتاب : Electrical Steels: Volume 2: Performance and applications
عنوان ترجمه شده به فارسی : فولادهای برقی: جلد 2: عملکرد و برنامه ها
سری : IET Energy Engineering Series, 157
نویسندگان : , , ,
ناشر : The Institution of Engineering and Technology
سال نشر : 2019
تعداد صفحات : 665
ISBN (شابک) : 1785619721 , 9781785619724
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 36 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Contents
Acknowledgements
Preface
Common acronyms, symbols and abbreviations used in the text
Introduction to Volume 2
About the authors
1 Localised characteristics of electrical steels
1.1 Overview of content of Chapter 1
1.2 Effects of grain structure on domains, losses and magnetostriction in GO steel
1.2.1 Static domain structures
1.2.2 Presence and effect of lancet domains
1.2.3 Effect of grain misorientation on surface domain structures
1.2.4 Effect of grain misorientation on losses and magnetostriction
1.3 Estimation of losses in single crystals of SiFe
1.3.1 Hysteresis loss caused by motion of a single domain wall
1.3.2 Total loss associated with a single domain wall in GO steel
1.4 Significance of the width of main domains in GO steels
1.5 Domain wall bowing in GO steel
1.6 Combined effect of main and supplementary domains in GO steel
1.6.1 Local effects of thickness on losses
1.6.2 Effect of grain size on losses
1.7 Wall spacing and losses in grains of GO SiFe under a.c. magnetisation
1.7.1 Effects related to main wall spacing
1.7.2 Grain-to-grain interactions across grain boundaries in GO steels
1.7.3 Domain refinement processes
1.7.3.1 The motivation for domain refinement
1.7.3.2 Domain refinement mechanisms
1.7.3.3 Theoretical models
1.8 Domain studies in NO electrical steels
1.9 Internal domain structure in GO steel
1.10 Rotational losses in single grains
1.11 Localised magnetostriction
1.11.1 Magnetostriction in single grains of GO steel
1.11.2 A hypothetical model of the effect of surrounding grains on the magnetostriction of a single grain
1.11.3 Localised stress sensitivity of magnetostriction of GO steel
1.12 Surface magnetic features of GO steel
1.12.1 Background
1.12.2 Variation of the tangential component of surface field
1.12.3 Localised flux density and loss distribution
1.13 Losses under PWM excitation
1.14 Defects and precipitates
1.15 Analysis of the stress due to the coating on GO steel
1.15.1 Coating-induced stress
1.15.2 Differential contraction mechanism
1.15.3 Total stress induced during the coating processes
1.15.4 Practical separation of effects of coating stresses
1.16 Barkhausen effect
References
2 Practical properties of electrical steels
2.1 Permeability of electrical steels
2.2 Losses
2.2.1 Loss separation in commercial electrical steels
2.2.1.1 NO steels
2.2.1.2 GO steel
2.2.2 Rotational losses
2.2.2.1 Rotational losses in NO Steel
2.2.2.2 Rotational losses in GO steel
2.3 Stress sensitivity of losses
2.3.1 Introduction
2.3.2 Stress sensitivity of NO steel
2.3.3 Stress sensitivity of GO steel
2.4 Magnetostriction
2.4.1 Assessment of stress sensitivity
2.4.2 Aspects of low magnetostriction GO steels
2.4.3 Effect of coating on stress sensitivity of magnetostriction of GO steel
2.5 Domain refinement of GO steels
2.5.1 Background
2.5.2 Effectiveness of domain refinement techniques
2.5.3 Prototyping and commercial methods of domain refinement
2.5.3.1 Mechanical scribing
2.5.3.2 Laser scribing
2.5.3.3 Rotating ball mechanical process
2.5.3.4 Spark ablation
2.5.3.5 Plasma flame irradiation
2.5.3.6 Heatproof surface grooving
2.5.4 Other aspect of domain refinement
2.5.5 Two-sided scribing
2.5.6 Relationship between domain refinement and transformer characteristics
2.6 Angular dependence of loss in electrical steel
2.6.1 NO steel
2.6.2 GO steel
2.7 High and low-field properties of electrical steel
2.7.1 High flux density characteristics of GO steel
2.7.2 Low flux density characteristics
2.8 Effect of d.c. magnetisation bias
2.9 Performance of NO steels under PWM waveforms
2.9.1 Examples of loss variation with flux density, magnetising frequency and sheet thickness
2.9.2 Comparison between loss components in NO and GO steels under PWM excitation
2.10 Coatings and surface roughness
2.10.1 Coating on NO steel
2.10.2 Coatings on GO steel
2.11 Current and future trends in electrical steels
2.11.1 Progress in recent years
2.11.2 Drivers for improved electrical steels
2.11.3 Other factors
2.11.4 Possibilities for incremental improvements
References
3 Other electrical steels
3.1 High silicon steel
3.1.1 Background and potential
3.1.2 Methods of increasing alloying content by chemical diffusion
3.1.3 Commercial material
3.2 Cube-oriented electrical steel
3.3 Ultra-thin and automotive grade electrical steel
3.3.1 Ultra-thin electrical steel
3.3.2 Automotive NO steels
References
4 Prediction of losses in electrical steels
4.1 Introduction
4.2 Hysteresis modelling
4.2.1 Preisach models
4.2.2 Jiles–Atherton Model
4.3 Micro-magnetic approaches to loss prediction
4.4 Loss separation methods
4.5 Loss prediction under arbitrary flux density waveforms
4.6 Statistical theory of losses (STL)
4.7 Other approaches to loss prediction
4.8 An anecdotal historic perspective
References
5 Application of electrical steels in transformer cores
5.1 General background and types of transformers
5.2 Basic theory
5.3 Losses and efficiency
5.4 Equivalent circuit
5.5 Basic forms of transformers incorporating GO steel cores
5.6 Flux distribution in a 3-phase stacked cores
5.7 Strip wound cores
5.8 Stacked cores
5.9 Flux and loss distributions in joints of stacked cores
5.9.1 The double overlap joint
5.9.2 The butt–lap joint
5.9.3 The 45° mitred overlap joint
5.9.4 The T-joint
5.9.4.1 Localised flux density and loss in the 45°– 90° T-joint
5.9.4.2 Localised flux density and loss in the 45° offset T-joint
5.9.4.3 Rotational magnetisation in the T-joint
5.10 Packet-to-packet variation of properties of laminations in stacked cores
5.10.1 100 kVA 3-phase, 3-limb, 9-packet, single step-lap core [74]
5.10.2 12 MVA, 3-phase, 3-limb, 29 step, core [96]
5.11 Some effects of mixing grades of steels in a core
5.12 Effect of holes in laminations
5.13 Effects of coating defects and edge burrs
5.13.1 Interlaminar voltage and eddy currents due to core defects
5.13.2 Eddy current formation due to core defects
5.13.3 Detection of core faults
5.13.4 Investigations of the effects of artificial burrs
5.14 Circulating flux harmonics in transformer cores
5.15 Prediction of flux and loss distributions in cores
5.16 Capitalisation of transformer losses
5.17 The global power transformer market
References
6 Applications of electrical steel in rotating electrical machines
6.1 Basic principles of motors and generators
6.2 The d.c. rotating machine
6.2.1 Commutator action
6.2.2 The magnetic field of a d.c. machine
6.3 Practical layout of the d.c. machine
6.4 D.C. generators
6.5 D.C. motors
6.6 Efficiency and building factor of a d.c. machine
6.7 A.C. machines
6.7.1 The induction motor
6.7.1.1 Principle of operation
6.7.1.2 Efficiency and building factor of the induction motor
6.7.2 The synchronous machine
6.7.2.1 The synchronous generator
6.7.2.2 The synchronous motor
6.7.2.3 Application of GO steel in stator cores of a.c. machines
6.8 Soft magnetic materials used in small rotating machines
6.9 Categorisation of small motors
6.9.1 Stepper motor
6.9.2 Universal motor
6.9.3 Hysteresis motor
6.9.4 Brushless d.c. motor
6.9.5 Reluctance motor
6.9.6 Switched reluctance motor
6.9.7 Shaded pole motor
6.9.8 Linear motor
6.10 SMC powder cores
6.11 Flux and loss distributions in rotating machine cores
6.12 Flux density and losses in motors under PWM voltage excitation
6.13 Use of electrical machines in variable speed drives
6.14 Generators in wind power systems
6.15 Laminated cores in rotating machines
6.15.1 Traditional lamination route
6.15.2 Slinky-laminated cores
6.16 Rotating electrical machines in automotive applications
6.17 Machine testing
6.17.1 No-load test
6.17.2 Locked-rotor test
6.17.3 Temperature rise
References
7 Non-sinusoidal magnetisation and applications
7.1 Introduction
7.2 Power electronic converters
7.2.1 Square wave inverter
7.2.2 PWM inverter
7.2.3 Matrix converters
7.2.4 Space vector modulation
7.3 Losses under distorted waveforms
7.4 Loss models under distorted magnetisation waveforms
7.5 Influence of distorted waveforms on material properties
7.6 Measurement and testing under non-sinusoidal magnetisation
References
8 Magnetic building factors in electrical steel cores
8.1 Background
8.2 Definition of the magnetic building factor
8.3 Regional building factors within a core
8.4 Causes and prediction of the BF
8.5 Influence of material grade on the BF
8.6 BF of stacked cores incorporating nanocrystalline and amorphous ribbon
References
9 Use of amorphous ribbon and nano-materials in transformer cores
9.1 Amorphous ribbon in transformer cores
9.2 Nano-crystalline alloys
9.3 High silicon steel
9.4 Traction transformer applications
9.5 Flux distributions in stacked amorphous transformer cores
References
10 Electrical machine core vibration and noise
10.1 Noise and vibration terminology and analysis
10.1.1 Acoustic noise
10.1.2 Surface vibration
10.1.3 Resonance effects in electrical steel and transformers
10.2 Historical perspective of transformer noise
10.3 Measurement of no-load and load noise
10.4 Magnetic core noise
10.5 Origins of magnetic core vibration
10.5.1 Dimensional changes due to magnetostriction
10.5.2 Dimensional changes due to Maxwell forces
10.5.3 Combined effects of magnetostriction and Maxwell forces
10.5.3.1 A simple approach to separating sources of vibration
10.6 Correlation between magnetostriction, core vibration and noise
10.6.1 Top and side surfaces
10.6.2 Front surface
10.6.3 Magnetostriction characteristics
10.7 Effect of phase displacement on noise of 3-phase transformer cores
10.8 Effect of core design and material on noise
10.8.1 Core material
10.8.2 Corner overlap length
10.8.3 Number of steps
10.8.4 Number of laminations per step
10.8.5 T-joint configuration
10.8.6 Clamping stress
10.9 Modelling and analysis of core vibration
10.10 Amorphous material in power transformers
10.11 Reduction of noise of transformer cores
10.12 Acoustic noise from rotating electrical machines
10.12.1 Background
10.12.2 Role of magnetostriction
10.12.2.1 Effect of rotational magnetostriction on core deformation
10.12.2.2 Noise of machines subjected to non-sinusoidal voltage excitation
References
11 Approaches to predictions and measurements of flux density and loss distributions in electrical machine cores
11.1 Introduction
11.2 Maxwell\'s equations
11.3 Computational electromagnetics
11.4 Power-loss prediction in magnetic cores
11.5 Justification of continued use of experimental methods
11.6 Experimental methods
References
12 The application of international standards to magnetic alloys and steels
12.1 The development of national and international standards
12.1.1 The International Electrotechnical Commission
12.1.1.1 The operating system and products of the IEC
12.2 IEC TC 68 – Magnetic alloys and steels
12.2.1 The relationships between the IEC and the European National Committees
12.3 Building standards for electrical steels – grain oriented material
12.3.1 Measurement standards – the Epstein test
12.3.2 Measurement standards – the single sheet test
12.4 Building standards for electrical steels – non-oriented materials
12.5 Standards relating to the geometrical characteristics of electrical steels
12.6 Standards relating to the technological characteristics of electrical steels
12.7 Standards for non-oriented and grain oriented material over the medium frequency range of 400–10,000 Hz
12.8 The development of technical report investigations prior to drafting a standard
12.8.1 Technical report on magnetostriction
12.9 Changes in the European organisations
References
13 Electrical steels and renewable energy systems
13.1 Introduction
13.2 Biomass
13.3 Geothermal energy
13.4 Hydroelectric
13.5 Marine energy
13.6 Solar schemes
13.7 Wind energy
13.8 Small modular nuclear reactors (SMRs)
13.9 Historic and predicted growth of electrical power generation from all sources
13.10 Grid development
13.11 Impact on harmonics
13.12 Impact of electric vehicles
13.13 Large-scale energy storage
13.14 The future of non-renewable sources
References
14 Environmental impact of electrical steels
14.1 Introduction
14.2 Global impact
14.3 Impact of losses from GO steel on the environment
14.4 Impact of losses in NO steels on the environment
14.5 The impact of losses in electrical steels on greenhouse gas emissions
14.6 Efficiency standards for transformers and motors
14.6.1 Transformers
14.6.2 Motors
14.7 Perceived barriers to the use of TOC concepts
14.8 Concluding remarks
References
15 Typical magnetic performance data of commercial electrical steels
15.1 Introduction to sources of performance data
15.1.1 A.C. measurements
15.1.2 D.C. measurements
15.1.3 Magnetostriction measurements
15.1.4 Magnetic measurements under applied stress
15.1.5 Magnetic measurements at elevated temperature
15.2 Ranges of standard characteristics of non-oriented steels
15.2.1 D.C. B–H and permeability characteristics of NO materials
15.2.2 A.C. B–H, permeability and loss characteristics
15.2.3 Comparison of a.c. characteristics of NO electrical steels
15.2.4 Examples of a.c. B–H loop examples in NO electrical steels
15.3 Ranges of standard characteristics of grain oriented steels
15.3.1 D.C. B–H and permeability characteristics
15.3.2 A.C. B–H, permeability and loss characteristics
15.3.3 Comparison of a.c. characteristics of GO electrical steels
15.3.4 Examples of a.c. B–H loop examples in GO electrical steels
15.4 Examples of loss separation in electrical steels
15.5 Characteristics at low and high flux densities
15.6 Characteristics under non-sinusoidal magnetisation conditions
15.7 Stress dependence of loss and permeability
15.7.1 NO materials
15.7.2 GO Materials
15.8 Stress dependence of magnetostriction
15.8.1 NO materials
15.8.2 GO Materials
15.9 Effect of temperature
15.10 Rotational magnetisation
Reference
Index
Back Cover




پست ها تصادفی