توضیحاتی در مورد کتاب Electrochemical Kinetics: Theoretical and Experimental Aspects
نام کتاب : Electrochemical Kinetics: Theoretical and Experimental Aspects
عنوان ترجمه شده به فارسی : سینتیک الکتروشیمیایی: جنبه های نظری و تجربی
سری :
نویسندگان : K.J. Vetter
ناشر : Academic Press Inc.,U.S.
سال نشر : 1968
تعداد صفحات : 822
ISBN (شابک) : 012720251X , 9780127202518
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 186 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Preface to English-Language Edition......Page 3
Contents......Page 5
Introduction......Page 13
1. Electrode and Cell......Page 15
2. Electrode and Cell Potential Difference......Page 16
3. Inner, Outer, and Surface Potentials......Page 18
5. Volta Potential Difference......Page 19
6. Equilibrium Potentials......Page 20
8. Anodic and Cathodic Current, Faraday's Law......Page 21
10. Exchange Current Density......Page 23
B. Equilibrium Potentials......Page 24
11. Change in Free Enthalpy (Gibbs Free Energy) and Cell Voltage......Page 25
12. Temperature Dependence of the Cell Voltage and Generation and Heat in the Galvanic Cell (Peltier Effect)......Page 29
13. The Electrochemical Potential......Page 31
14. Pressure Dependence of the Equilibrium Cell Voltage......Page 33
15. Concentration Dependence of Equilibrium Cell Voltage (General)......Page 34
17. Various Types of Metal/Ion Electrodes......Page 36
18. The Formation of the Potential Difference. Kinetic and Thermodynamic (Nernst's) Concepts......Page 37
19. Concentration Dependence of the Metal/Ion Potential......Page 38
20. The Standard Electrode Potential of Metal/Ion Electrodes......Page 40
21. Concentration Cells with Transport......Page 42
22. Concentration Cells without Transport......Page 44
23. Electrodes of the Second Kind......Page 46
24. The Estabilishment of Redox Potentials......Page 49
25. Concentration Dependence of Redox Potentials......Page 51
26. The Hydrogen Electrode......Page 53
27. Organic Redox Potentials......Page 54
28. The Cause of the Formation of Liquid Junction Potentials......Page 59
29. General Equation for the Liquid Junction Potential......Page 60
30. Liquid Junction Potential at Different Concentrations of Identical Dissolved Substances......Page 61
31. Liquid Junction Potential in the Most General Case......Page 62
i) Henderson's Equation......Page 63
ii) Planck's Equation......Page 64
32. Liquid Junction Potential Under Special Conditions......Page 65
33. Minimizing the Liquid Junction Potential......Page 66
34. Concepts of the Formation of Donnan Potentials with Semi-permeable Membranes and Ion Exchange Surfaces......Page 67
35. The Magnitude of the Donnan Potential Difference......Page 69
36. Membrane Potentials on Ion Exchanger......Page 76
37. Potentials in Membrane Systems......Page 80
38. The Glass Electrode......Page 82
39. The Membrane Electrode......Page 86
40. Theory of the Electrical Double Layer......Page 87
41. Experimental Values of the Double Layer Capacity......Page 93
42. Electrocapillarity......Page 95
i) Experimental Methods for the Determinations of EtaN......Page 102
ii) Interpretation of the Lippmann Potential......Page 104
iii) No Absolute Potential......Page 106
i) Experimental Methods......Page 107
ii) Theoretical Interpretation......Page 109
i) Basic Principle......Page 111
ii) Experimental Determination......Page 115
46. The Formulation of Problems in Electrode Kinetics......Page 118
47. Various Types of Overvoltage......Page 119
48. Definition of Charge-Transfer Reaction and of Charge-Transfer Overvoltage......Page 121
i) The Dependence of Activation Energies on Potentials......Page 125
ii) The Charge-Transfer Overvoltage on Redox Electrodes Neglecting the zeta-Potential. (Excess of Indifferent Electrolyte)......Page 129
iii) Quantum Theoretical Treatment of the Charge-Transfer Reaction at Redox Electrodes......Page 135
iv) Charge-Transfer Overvoltage on Redox Electrodes with Allowance for the zeta-Potential......Page 143
50. Charge-Transfer Overvoltage at Complicated Redox Electrodes Preceded or Followed by Reactions in Chemical Equilibrium......Page 145
i) Dependence of Activation Energies on Potential......Page 148
ii) Charge-Transfer Overvoltage on Metal/Ion Electrodes Neglecting the zeta-Potential (Excess of Indifferent Electrolyte)......Page 152
iii) Charge-Transfer Overvoltage at Metal/Ion Electrodes with Allowance for the zeta-Potential......Page 158
i) Without Consideration of the zeta-Potential......Page 159
ii) With Consideration of the zeta-Potential......Page 161
53. Charge-Transfer Overvoltage with a Sequence of Several Different Charge-Transfer Reactions......Page 163
i) RD for Direct Current......Page 168
ii) RD for Alternating Current......Page 169
55. Definition of the Diffusion Overvoltage......Page 171
i) In the Presence of a Large Excess of an Indifferent Electrolyte......Page 173
ii) At Constant Transport Through the Diffusion Layer......Page 180
iii) General Treatment......Page 185
iv) Discussion of Examples......Page 186
i) Definition of Problem and Special Formulation......Page 191
ii) General Formulation of the Equation System......Page 194
iii) Solution of the Diffusion Problem in Special Cases......Page 195
i) Without Preceding Homogeneous Chemical Equilibrium......Page 198
ii) With Preceding Homogeneous Chemical Equilibrium......Page 199
59. Diffusion Overvoltage Under the Condition of Spherical Diffusion......Page 201
i) Stirring of the Electrolyte......Page 202
Laminar Flow......Page 203
Turbulent Flow......Page 205
ii) Without Stirring of the Electrolyte......Page 207
61. Diffusion Resistance with Direct Current......Page 212
62. Diffusion Impedance with Alternating Current......Page 214
i) No Convection in the Electrolyte Solution......Page 219
ii) With Convection in the Electrolyte Solution......Page 223
i) Without Convection in the Electrolyte Solution......Page 227
ii) With Convection in the Electrolyte Solution......Page 230
i) The Ilkovic Equation......Page 233
ii) The Polarographic Current-Voltage Curve and the Half-Wave Potential......Page 239
66. Inapplicability of the Diffusion Overvoltage for the Elucidation of Reaction Mechanisms......Page 242
67. Definition of the Reaction Overvoltage......Page 245
68. Reaction Overvoltage with a Rate-Determining Homogeneous Reaction in Electrolytes......Page 249
69. Reaction Overvoltage with a Rate-Determining Heterogeneous Chemical Reaction......Page 258
i) Criteria for the Differentiation Between Limiting Diffusion Current Density, Limiting Homogeneous and Heterogeneous Reaction Current Density......Page 261
ii) Concentration Dependence of the Limiting Heterogeneous Reaction Current Density......Page 262
iii) Concentration Dependence of the Limiting Homogeneous Reaction Current Density......Page 263
ii) With a Rate-Determining Heterogeneous Reaction......Page 265
i) With a Rate-Determing Homogeneous Reaction......Page 266
ii) With a Rate-Determing Heterogeneous Reaction......Page 273
73. Time-Dependence of the Reaction Current Density at Constant Reaction Overvoltage (Potentiostatic Condition)......Page 277
i) Current Density at the Drop Surface......Page 282
ii) The Instantaneous Current......Page 289
iii) the Average Current......Page 291
v) The Shape of the Polarographic Current-Voltage Curve in the Presence of a Rate-Determining Chemical Reaction......Page 294
75. Definition of the Crystallization Overvoltage......Page 296
i) Stranski-Kossel Theory of Crystal Growth......Page 297
1.1) Linear Diffusion to and from the steps......Page 298
1.2) Circularly symmetrical diffusion at growth sites (kinks)......Page 312
2) Rate-Controlling Removal from the Growth Sites......Page 316
2.1) Linear Diffusion from the groth steps......Page 317
2.2) Circularly symmetrical diffusion about growth sites (kinks)......Page 320
3) Direct Incorporation and Removal at Steps and Kinks......Page 321
4) Process at Screw Dislocations......Page 323
5.1) Rate-Control by surface diffusion......Page 327
iii) With Surface Nucleation......Page 329
1) Rate of Formation of Nuclei......Page 330
2) Growth of Surface Nuclei......Page 334
3) Current-Potential Relation......Page 338
iv) Formation of Three-Dimensional Nuclei......Page 340
77. Crystallization Impedance......Page 341
i) Rate-Controlling Surface Diffusion......Page 342
ii) Rate-Control from the Deposition or Dissolution at Growth Steps or Kinks......Page 347
i) Division into Diffusion and Reaction Overvoltage......Page 348
ii) Superposition for delta-t << delta......Page 349
iii) Limiting Current Densities with Superposition of Diffusion and Reaction Rate-Control......Page 352
79. Division of the Total Overvoltage into Charge-Transfer, Diffusion, Reaction and Crystallization Overvoltage......Page 353
80. DC Polarization Resistance......Page 357
i) General Equivalent-Circuit Diagram......Page 359
ii) Charge-Transfer and Diffusion Resistance......Page 361
iii) Reaction (Crystallization) and Diffusion Resistance......Page 362
iv) Charge-Transfer, Reaction (Crystallization), and Diffusion Resistance and Faradaic Impedance......Page 364
v) Various Parallel Reaction Paths......Page 367
i) Diffusion and Charge-Transfer Overvoltage......Page 368
ii) With Superposition Charge-Transfer, Diffusion and Reaction Rate-Control......Page 372
83. Total Overvoltage with Transient Potentiostatic Processes......Page 377
84. Superposition of Diffusion and Charge-Transfer Overvoltage in Polarography......Page 382
85. Faradaic Rectification......Page 385
85a. Older Definitions of Overvoltage Types......Page 398
86. Definition of Resistance Polarization......Page 399
i) Without Addition of Supporting Electrolyte......Page 401
ii) With Addition of Supporting Electrolyte......Page 403
88. Resistance Polarization in Surface Films......Page 404
i) Plane Surfaces......Page 406
ii) Cylindrical Surfaces......Page 408
iii) Spherical Surfaces......Page 409
91. Examination of the Overall Electrode Reaction......Page 410
92. Dependence of Limiting Current Density on Stirring......Page 413
93. Period Fluctuation of Current and Potential......Page 414
94. Negligible Reaction Overvoltage in Addition to Diffusion Overvoltage......Page 416
95. Negligible Diffusion Overvoltage in Addition to Reaction Overvoltage......Page 417
96. The Occurence of Charge-Transfer Overvoltage......Page 418
97. The Occurence of Crystallization Overvoltage......Page 419
98. The Occurence of Resistance Polarization......Page 420
99. Frequency Dependence of the Faradaic Impedance as a Criterion for the Type of Overvoltage......Page 423
100. Frequency Dependence of the Faradaic Impedance at Nonuniform Electrode Surfaces......Page 426
i) Determination of the Charge-Transfer Overvoltage......Page 427
ii) Determination of Chemical Reaction Rates......Page 431
iii) Determination of Crystallization Overvoltage......Page 433
102. Potentiostatic Step-Function Measurements......Page 434
103. The Determination of the Exchange Current Density......Page 438
104. Determination of Chemical Reaction Rates......Page 442
105. Definition of the Electrochemical Reaction Orders......Page 446
106. Determination of zoj and zrj from Concentration-Dependence of the Charge-Transfer Current Density......Page 447
107. Determination of zoj and zrj from Concentration-Dependence of the Exchange Current Density......Page 450
108. From the Concentration Dependence of the Limiting Reaction Current Density......Page 454
109. From the Shape of the Direct Current vs. Voltage Curve......Page 455
i) Separation of the Reaction Impedance from the Total Polarization Impedance......Page 457
ii) Rate-Determining Homogeneous Reaction......Page 459
iii) Rate-Determining Heterogeneous Reaction......Page 460
111. From the Concentration and Time-Dependence in Step-Function Measurements......Page 462
112. From Electrochemical Reaction Orders......Page 465
113. From the Chemical Reaction Orders......Page 467
114. Fe4+/Fe3+ Electrode......Page 469
115. Ce4+/Ce3+ Electrode......Page 471
116. Mn3+/Mn2+ Electrode......Page 474
117. Mn4+/Mn3+ Electrode......Page 476
118. Ti4+/Ti3+ and Ti3+/Ti2+ Electrode......Page 479
119. Cl2/Cl- Electrode......Page 481
120. Br2/Br- Electrode......Page 484
121. I2/I- Electrode......Page 485
122. Iodate/Iodine/Iodide Electrode......Page 489
123. Tl3+/Tl+ Electrode......Page 491
124. Sn4+/Sn2+ Electrode......Page 495
125. The Quinhydrone Electrode......Page 497
126. Methylene Blue/Leucomethylene Blue Electrode......Page 501
127. HNO3/HNO2 Electrode......Page 504
128. Ferricyanide/Ferrocyanide Electrode......Page 507
129. Fe(III) oxalate/Fe(II) oxalate Electrode......Page 509
130. Cr3+/Cr2+ Electrode......Page 510
131. Cr(III) cyanide/Cr(II) cyanide Electrode......Page 511
132. Chromate/Chromium (III) Electrode......Page 512
133. Eu3+/Eu2+ Electrode......Page 513
134. Vanadium(III)/Vanadium(II) Electrodes......Page 514
135. Persulfate Reduction and Reduction of Other Anions......Page 515
136. Formaldehyde/Methyl Alcohol Electrode......Page 518
137. Polarographic Kinetic Currents with Preceding Chemical Reaction......Page 520
138. Polarographic Kinetic Currents with the Occurrence of Subsequent Chemical Reactions......Page 526
139. Reaction Mechanisms of the Hydrogen Electrode......Page 530
140. Theoretical Dependence of the Hydrogen Overvoltage on the Current Density......Page 531
i) Volmer Reaction......Page 532
ii) Tafel Reaction......Page 533
iii) The Heyrovsky Reaction......Page 537
iv) The Volmer-Tafel Mechanism......Page 539
v) The Volmer-Heyrovsky Mechanism......Page 542
vi) The Volmer-Heyrovsky Mechanism with Rate-Control by Adsorption and Desorption......Page 547
vii) The Diffusion Overvoltage at the Hydrogen Electrode......Page 550
i) High Overvoltage (Validity of the Tafel Equation)......Page 551
ii) Very Large Current Densities......Page 554
iii) Very Small Current Densities......Page 557
iv) Small Overvoltages......Page 558
v) Anodic Hydrogen Overvoltage......Page 563
i) Theoretical pH-Dependence......Page 569
ii) Experimental pH-Dependence, in the Presence of an Excess of Supporting Electrolite......Page 570
iii) Experimental pH-Dependence without Supporting Electrolyte......Page 573
143. The Effect of Addition of Indifferent Ions on the Overvoltage (No Adsorption)......Page 577
i) Adsorption of Ions......Page 579
ii) Adsorption of Neutral Molecules......Page 581
iii) Catalytic Influence of Adsorbed Substances......Page 584
i) Cathodic Overvoltage......Page 586
ii) Anodic Overvoltage......Page 589
146. Influence of the Electrode Metal......Page 590
i) Theoretical Dependence of the Degree of Coverage......Page 592
ii) Determination of the Degree of Coverage from Charging Curves......Page 594
iii) Determination of the Degree of Coverage from the Steady-State Current-Voltage Curve......Page 598
iv) Experimental Dependance of the Anodic and Cathodic Partial Current Densities of the Degree of Coverage......Page 599
148. DC Polarization Resistance......Page 604
i) Faradaic Impedance for the Volmer-Heyrovsky Mechanism. General Case......Page 606
ii) Faradaic Impedance at the Equilibrium Potential......Page 608
iii) Faradaic Impedance, if Anodic and Cathodic Overvoltage are Large. Superposition of Alternating Current......Page 611
i) Volmer-Heyrovsky Mechanism......Page 614
ii) Volmer-Tafel Mechanism......Page 617
i) Volmer-Heyrovsky Mechanism......Page 619
ii) Volmer-Tafel Mechanism......Page 622
152. The Migration of the Hydrogen Overvoltage through Metal Membranes, and the Diffusion of Dissolve Atomic Hydrogen......Page 623
153. Solubility of Atomic Hydrogen in the Electrode Metals......Page 626
i) Oxygen Electrode......Page 629
ii) H2O2 Redox Electrodes......Page 631
i) Layer Thickness......Page 632
ii) Potential......Page 636
156. Anodic Oxygen Formation......Page 638
i) Cathodic Reduction......Page 646
ii) Anodic Oxidation......Page 649
iii) Mechanism......Page 651
i) Cathodic......Page 653
iii) Catalytic H2O2 Decomposition......Page 655
159. Mechanism of the Oxygen Electrode......Page 656
B. Metal/Ion Electrodes......Page 658
i) Hg/(Hg2)2+ Electrode......Page 659
ii) Zn Amalgam/Zn2+ Electrode......Page 663
iii) Cd Amalgam/Cd2+ Electrode......Page 666
iv) Other Amalgam Electrodes......Page 668
i) Zn Amalgam/Zn Hydroxide Complex......Page 670
ii) Zn Amalgam/Zn Oxalate Electrode......Page 672
iii) Zn Amalgam/ Zn Cyanide Electrode......Page 674
iv) Zn Amalgam/Zn Ammonia Electrode......Page 675
v) Cd Amalgam/Cd-Cyanide Electrode......Page 677
i) Older Measurements at Fe, Zn and Cu......Page 678
ii) Cd/Cd2+ Electrode......Page 680
iii) Ag/Ag+ Electrode......Page 682
i) Ag/Ag(CN)3/2- Electrode......Page 683
ii) Ag/Ag(NH3)2/+ Electrode......Page 684
i) With Rate-Control by Nucleation......Page 685
ii) Without Rate-Control by Nucleation......Page 688
165. Electrolytic Whisker Growth......Page 692
i) Growth Layers......Page 696
ii) Spiral Growth......Page 699
iii) Polycrystalline Metal Deposits......Page 700
i) Potentiostatic Conditions (Polarography)......Page 703
ii) Galvanostatic Conditions......Page 704
iii) AC Diffusion Impedance......Page 708
i) Reaction Cd(CN)4/2-......Page 709
ii) Other Dissociation Reactions of Complexes......Page 711
169. Reaction Paths......Page 712
170. Conductivity of Surface Films......Page 713
171. Electrochemical Interpretation of the Ionic Product of Saturated Solutions on a Kinetic Basis......Page 714
172. Dissolution of Ionic Crystals Due to Diffusion......Page 716
i) Without Complex Formation......Page 717
ii) With Complex Formation......Page 719
173. Charge-Transfer Overvoltage in the Case of Dissolution of Ionic Crystals without Complex Formation......Page 720
174. Charge-Transfer Overvoltage in the Case of Dissolution of Ionic Crystals with Complex Formation......Page 724
i) Fast Dissolution Reaction......Page 725
ii) Slow Dissolution......Page 728
iii) Transformations of Surface Layers......Page 730
Electron Conducting Nonstoichiometric Covering Layer on an Inert Metal in Anionic Equilibrium with Electrolyte......Page 731
Electron-Conducting, Nonstoichiometric Covering Layer on Inert Metal (Electron-Conducting Semicomductor) in Cationic Equilibrium with Electrolyte......Page 735
Electron-Conducting, Nonstoichiometric Covering Layer on an Inert Metal (Electron-Conductin Semiconductor) in Equilibrium with the Electrolyte......Page 736
Electron-Conducting, Nonsoichiometric Covering Layer on the Same Metal in Anionic or Cationic Equilibrium with the Electrolyte......Page 739
ii) Experimental Confirmation from the Manganese Dioxide Electrode......Page 741
176. Mixed Potentials......Page 746
177. Current Efficiency......Page 748
178. The Concept of Electrolytic Corrosion......Page 749
179. Corrosion at Chemically and Physically Homogeneous Surfaces......Page 750
180. Pourbaix Diagrams......Page 753
181. Corrosion at Chemically Nonhomogeneous Surfaces (Local Current)......Page 755
182. Corrosion at Physically Nonhomogeneous Surfaces (Local Current)......Page 757
183. Local Current Resistance......Page 759
184. Characterization and Causes of Passivity......Page 762
185. Flade Potential......Page 763
186. Corrosion in the Passive State......Page 768
187. Ionic Conductivity of Passive Films and Film Formation......Page 773
188. Electronic Conductivity of Passive Films......Page 779
i) Theory......Page 781
ii) Measurements of the Film Thickness......Page 783
190. Chemical Composition and Structure of Passive Films......Page 785
191. Passivation......Page 787
192. Activation......Page 792
i) The Flade Potential of Iron......Page 794
ii) Passivation and Activation in Concentrated Nitric Acid......Page 797
194. Periodic Electrode Processes......Page 800
List of Frequently Used Symbols......Page 805
Authors Index......Page 811
Subject Index......Page 819