Electrochemistry for Bioanalysis

دانلود کتاب Electrochemistry for Bioanalysis

58000 تومان موجود

کتاب الکتروشیمی برای بیوآنالیز نسخه زبان اصلی

دانلود کتاب الکتروشیمی برای بیوآنالیز بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 5


توضیحاتی در مورد کتاب Electrochemistry for Bioanalysis

نام کتاب : Electrochemistry for Bioanalysis
ویرایش : 1
عنوان ترجمه شده به فارسی : الکتروشیمی برای بیوآنالیز
سری :
نویسندگان :
ناشر : Elsevier
سال نشر : 2021
تعداد صفحات : 332
ISBN (شابک) : 0128212039 , 9780128212035
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 19 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Front Cover
Half title
Full title
Copyright
Contents
Contributors
1 - Introduction to electrochemistry for bioanalysis
Keypoints
Principles
Applications in bioanalysis
1.1 Introduction
1.2 Bioanalysis
1.2.1 Where is my biomolecule?
1.3 Principles of electrochemistry
1.3.1 The electrochemical reaction
1.3.2 The electrochemical cell
Summary
2 - Amperometry and potential step techniques
Keypoints
Principles
Applications in bioanalysis
Strengths
Limitations
2.1 Introduction
2.2 Principles
2.2.1 Amperometry
2.2.2 Chronoamperometry
2.2.3 Multiple-potential steps
2.2.4 Pulsed amperometric detection (PAD)
2.3 Strengths and limitations
2.4 Applications
2.5 Summary
References
3 - Voltammetry
Keypoints
Principles
Applications in bioanalysis
Strengths
Limitations
3.1 Introduction
3.2 Principles
3.2.1 Differential pulse voltammetry
3.2.2 Fast-scan cyclic voltammetry
3.3 Strengths and limitations
3.4 Applications
3.4.1 DPV for discriminating analytes
3.4.2 FSCV in model organisms
3.4.3 FSCV beyond dopamine
3.4.4 Techniques to measure basal changes
3.5 Summary
References
4 - Microelectrodes and nanoelectrodes
Keypoints
Principles
Applications in bioanalysis
Strengths
Limitations
4.1 Introduction
4.2 Carbon fiber microelectrodes
4.2.1 Making carbon fiber microelectrodes
4.2.2 Types of carbon fiber microelectrodes
4.2.3 Electrochemical behavior of carbon fiber microelectrodes
4.2.4 Modification of carbon fiber microelectrodes
4.2.4.1 Electrochemical pretreatment
4.2.4.2 Chemical pretreatment
4.2.4.3 Film coatings
4.3 Microelectrode arrays
4.4 Nanoelectrodes
4.5 Summary
References
5 - Novel sensing materials and manufacturing approaches
Keypoints
Principles
Applications in bioanalysis
Strengths
Limitations
5.1 Introduction
5.2 Novel carbon materials for generation of electrodes
5.2.1 Carbon nanotubes
5.2.1.1 Preparation of carbon nanotubes
5.2.1.1.1 Arc discharge method
5.2.1.1.2 Chemical vapour deposition (CVD)
5.2.1.1.3 Laser ablation method
5.2.1.2 Making carbon nanotube sensors
5.2.2 Boron-doped diamond
5.2.2.1 Fabrication of bdd electrodes
5.2.3 Graphene
5.3 Carbon composite electrodes
5.3.1 Making carbon composite electrodes
5.3.2 Electrochemistry on composite electrodes
5.4 3D printing for development of electrodes
5.4.1 Photopolymerization
5.4.2 Extrusion
5.5 Summary
References
6 - Experimental design – challenges in conducting electrochemical measurements for bioanalysis
Keypoints
Principles
Applications in bioanalysis
Important parameters to consider when developing bioanalytical methods
6.1 Key factors that influence bioanalytical measurements
6.2 Electrode and instrumentation variables
6.2.1 Sensitivity, calibration, and detection limits
6.2.2 Spatial resolution
6.2.3 Stability
6.2.3.1 Fouling from large biomolecules
6.2.3.2 Fouling from redox by-products
6.2.3.3 Accounting for electrode fouling
6.2.4 Electrode drift and noise
6.2.5 Sampling
6.3 Experimental variables
6.3.1 Measurement environment conditions
6.3.3 Flow and perfusion
6.4 Biological environment
6.4.1 Viability
6.4.2 Signalling processes
6.4.3 Manipulating the analyte concentration in the biological environment
6.5 Summary
References
7 - Electrochemistry at and in single cells
Keypoints
Principles
Applications in bioanalysis
Strengths
Limitations
7.1 Introduction
7.2 General introduction of exocytosis
7.3 Basic history at electrochemistry at/in cells
7.4 Electrodes for single cell and subcellular analysis
7.5 Cellular techniques to study exocytotic neurotransmitter release
7.5.1 Amperometry
7.5.2 Patch amperometry
7.5.3 Other techniques
7.6 Dynamics of exocytotic release revealed through interpretation of single-cell amperometric data
7.6.1 Analysis of the pre-spike foot and post-spike foot
7.7 Modeling exocytosis and closing of the fusion pore
7.7.1 Modeling exocytotic release and characteristics of fusion pore
7.7.2 Understanding the closing of the fusion pore
7.8 Applications of amperometry in neuroscience research
7.9 Intracellular electrochemistry
7.9.1 History of intracellular electrochemistry
7.9.2 Patch amperometry for studying cytoplasmic catecholamine concentration
7.9.3 Vesicle impact electrochemical cytometry (VIEC)
7.9.3.1 Development of VIEC
7.9.3.2 Mechanistic aspects regarding vesicle rupture and opening during VIEC
7.9.4 Development and mechanism of intracellular vesicle impact electrochemical cytometry (IVIEC)
7.9.5 The combination of SCA, iviec and viec to study exocytotic release
7.10 Measurements of reactive oxygen and nitrogen species (ROS/RNS) at/in single cells
7.10.1 General introduction of ros/rns
7.10.2 History of electrochemical ros/rns measurements
7.10.3 Small probes for ROS/RNS release
7.10.4 ROS/RNS in cells and iviec
7.11 Enzyme-based electrodes for single cell analysis
7.11.1 Cholesterol in membranes
7.11.2 Glutamate/Superoxide anions in single cells
7.12 Scanning electrochemical microcopy (SECM) at single cells
7.13 Summary
References
8 - Measurement from ex vivo tissues
Keypoints
Principles
Applications in bioanalysis
Strengths
Limitations
8.1 Introduction
8.2 Ex vivo tissues – what are they?
8.2.1 Benefits and limitations of using ex vivo tissues
8.3 Experimental considerations for measuring ex vivo tissues
8.3.1 Tissue preservation
8.3.2 Interfacing electrodes to the ex vivo tissue
8.4 Studies conducted using ex vivo tissues
8.4.1 Co-culture of cells and cultured 3D structures
8.4.2 Brain slices
8.4.2 Lymph nodes
8.4.3 Adrenal glands
8.4.4 Kidneys
8.4.5 Arteries and veins
8.4.6 Digestive tract
8.5 Measurements from ex vivo organs from simple biological models
8.5.1 Invertebrates
8.5.2 Zebrafish
8.6 Future directions
8.7 Summary
References
9 - In vivo electrochemistry
Keypoints
Principles
Applications in bioanalysis
Strengths
Limitations
9.1 Introduction
9.2 What are in vivo measurements?
9.3 Strengths and limitations of in vivo experimentation
9.4 Criteria for ideal in vivo measurements
9.5 Electrochemical techniques
9.5.1 Electrochemical measurements in vivo – a historical perspective
9.5.2 Method development - Fast-scan cyclic voltammetry (FSCV)
9.5.3 Sensor development
9.6 Experimental optimization for acute and chronic in vivo measurement
9.6.1 Type of electrode
9.6.2 Sensor placement
9.6.3 Reference electrodes
9.6.4 Electrochemical method
9.6.5 Background/capacitive signal
9.6.6 Anaesthesia versus freely moving
9.6.7 Electrode calibration
9.7 Measurements in vivo
9.7.1 Measurements in the brain
9.7.2 Acute monitoring
9.7.3 The need for acute ambient level measurements
9.7.4 Chronic measurements
9.8 Measurements in different regions of the body
9.9 Summary and future directions
References
10 - Measurement in biological fluids
Keypoints
Principles
Applications in bioanalysis
Strengths
Limitations
10.1 Introduction
10.2 Different biological fluids
10.3 Blood
10.3.1 Measurement from different blood cells
10.3.2 Measurement within whole blood
10.4 Urine
10.5 Saliva
10.6 Sweat
10.7 Interstitial fluid
10.8 Tear fluid
10.9 Future directions
10.10 Summary
References
11 - Measurement of reactive chemical species
Keypoints
Principles
Applications in bioanalysis
Strengths
Limitations
11.1 Introduction
11.2 Reactive oxygen species (ROS)
11.3 Reactive nitrogen species (RNS)
11.4 Role of ros/rns in biology
11.5 Electrochemistry of ros/rns
11.5.1 Challenges in electrochemical monitoring of ros/rns
11.6 Electrode modifications to measure ros/rns
11.6.1 Selective film coatings
11.6.2 Chemically modified electrodes
11.6.3 Biologically modified electrodes
11.7 Measurement of reactive species from biological environments
11.8 Summary
References
12 - Electrochemical biosensors
Keypoints
Principles
Applications in bioanalysis
Strengths
Limitations
12.1 Introduction
12.2 Types of enzymatic biosensors
12.2.1 First generation biosensors
12.2.2 Second generation biosensors
12.2.3 Third generation biosensors
12.3 Immobilization of enzymes on electrode surfaces
12.4 Factors that influence the performance of biosensor measurements
12.5 Application of biosensors
12.5.1 Determination of glutamate
12.5.2 Monitoring acetylcholine and choline
12.5.3 Determination of adenosine triphosphate (ATP)
12.6 Summary
Further reading
References
13 - Electrogenerated chemiluminescence (ECL)
Key points
Principles
Applications in analysis
Strengths
Limitations
13.1 Electrogenerated chemiluminescence introduction
13.1.1 ECL overview
13.2 Electrochemistry and ECL
13.2.1 Thermodynamics relevance to ECL
13.2.2 Heterogeneous kinetics relevance to ECL
13.2.3 Mass transport and ECL
13.2.4 Chronoamperometry and ECL
13.2.5 Potential sweep methods and ECL
13.3 Electron transfer theory and ECL
13.3.1 Electron transfer history
13.3.2 Electron transfer and ECL
13.4 ECL history
13.4.1 ECL discovery
13.4.2 Early ecl characterization
13.4.3 Early ecl luminophores
13.4.4 ECL mechanism development
13.5 ECL instrumentation
13.5.1 ECL instrumentation for application development
13.5.2 ECL instrumentation for fundamental research
13.6 ECL simulation
13.6.1 ECL simulation methods
13.6.2 Development of ecl simulations
13.7 ECL materials development
13.7.1 Novel ecl luminophore development
13.7.2 ECL enhancement through functionalization
13.8 Conclusions and perspectives
References
Index
Back Cover




پست ها تصادفی