توضیحاتی در مورد کتاب Electromagnetic Metasurfaces
نام کتاب : Electromagnetic Metasurfaces
عنوان ترجمه شده به فارسی : فراسطح های الکترومغناطیسی
سری :
نویسندگان : Karim Achouri, Christophe Caloz
ناشر : Wiley-IEEE
سال نشر : 2021
تعداد صفحات : 214
ISBN (شابک) : 9781119525165 , 1119525160
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 11 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover\nTitle Page\nCopyright\nContents\nPreface\nChapter 1 Introduction\n 1.1 Metamaterials\n 1.2 Emergence of Metasurfaces\nChapter 2 Electromagnetic Properties of Materials\n 2.1 Bianisotropic Constitutive Relations\n 2.2 Temporal Dispersion\n 2.2.1 Causality and Kramers–Kronig Relations\n 2.2.2 Lorentz Oscillator Model\n 2.3 Spatial Dispersion\n 2.4 Lorentz Reciprocity Theorem\n 2.5 Poynting Theorem\n 2.6 Energy Conservation in Lossless–Gainless Systems\n 2.7 Classification of Bianisotropic Media\nChapter 3 Metasurface Modeling\n 3.1 Effective Homogeneity\n 3.1.1 The Homogeneity Paradox\n 3.1.2 Theory of Periodic Structures\n 3.1.3 Scattering from Gratings\n 3.1.4 Homogenization\n 3.2 Effective Zero Thickness\n 3.3 Sheet Boundary Conditions\n 3.3.1 Impedance Modeling\n 3.3.2 Polarizability Modeling\n 3.3.3 Susceptibility Modeling\n 3.3.4 Comparisons Between the Models\n 3.3.4.1 Microscopic and Macroscopic Perspectives\n 3.3.4.2 Material Tensor Dimensions and Normal Polarizations\n 3.3.4.3 Uniform and Nonuniform Metasurfaces\n 3.3.4.4 Extension to Time‐Varying or Nonlinear Systems\nChapter 4 Susceptibility Synthesis\n 4.1 Linear Time‐Invariant Metasurfaces\n 4.1.1 Basic Assumptions\n 4.1.2 Birefringent Metasurfaces\n 4.1.3 Multiple‐Transformation Metasurfaces\n 4.1.4 Relations Between Susceptibilities and Scattering Parameters\n 4.1.5 Surface‐Wave Eigenvalue Problem\n 4.1.5.1 Formulation of the Problem\n 4.1.5.2 Dispersion in a Symmetric Environment\n 4.1.6 Metasurfaces with Normal Polarizations\n 4.1.7 Illustrative Examples\n 4.1.7.1 Polarization Rotation\n 4.1.7.2 Multiple Nonreciprocal Transformations\n 4.1.7.3 Angle‐Dependent Transformations\n 4.2 Time‐Varying Metasurfaces\n 4.2.1 Formulation of the Problem\n 4.2.2 Harmonic‐Generation Time‐Varying Metasurface\n 4.3 Nonlinear Metasurfaces\n 4.3.1 Second‐Order Nonlinearity\n 4.3.1.1 Frequency‐Domain Approach\n 4.3.1.2 Time‐Domain Approach\nChapter 5 Scattered Field Computation\n 5.1 Fourier‐Based Propagation Method\n 5.2 Finite‐Difference Frequency‐Domain Method\n 5.3 Finite‐Difference Time‐Domain Method\n 5.3.1 Time‐Varying Dispersionless Metasurfaces\n 5.3.2 Time‐Varying Dispersive Metasurfaces\n 5.4 Spectral‐Domain Integral Equation Method\nChapter 6 Practical Implementation\n 6.1 General Implementation Procedure\n 6.2 Basic Strategies for Full‐Phase Coverage\n 6.2.1 Linear Polarization\n 6.2.1.1 Metallic Scattering Particles\n 6.2.1.2 Dielectric Scattering Particles\n 6.2.2 Circular Polarization\n 6.3 Full‐Phase Coverage with Perfect Matching\n 6.4 Effects of Symmetry Breaking\n 6.4.1 Angular Scattering\n 6.4.2 Polarization Conversion\nChapter 7 Applications\n 7.1 Angle‐Independent Transformation\n 7.2 Perfect Matching\n 7.3 Generalized Refraction\n 7.3.1 Limitations of Conventional Synthesis Methods\n 7.3.2 Perfect Refraction Using Bianisotropy\nChapter 8 Conclusions\nChapter 9 Appendix\n 9.1 Approximation of Average Fields at an Interface\n 9.2 Fields Radiated by a Sheet of Dipole Moments\n 9.3 Relations Between Susceptibilities and Polarizabilities\nReferences\nIndex\nEULA