توضیحاتی در مورد کتاب :
رسانایی الکترونیکی: نظریه کلاسیک و کوانتومی در دستگاههای نانوالکترونیک مقدمه مختصر و کاملی بر اصول اساسی هدایت الکترونیکی در دستگاههای میکروالکترونیک و نانوالکترونیک با تاکید بر ادغام جنبه های کوانتومی هدایت
پوشش فصل با ارائه نظریه کلاسیک رسانایی، شامل فصلهای مقدماتی مکانیک کوانتومی و حالت جامد آغاز میشود، سپس به ارائه کامل نظریه ضروری برای درک دستگاههای الکترونیکی مدرن میپردازد. رویکرد منحصر به فرد نویسنده برای شبیهسازی دستگاههای میکرومقیاس و نانومقیاس، که بهویژه با توجه به انفجار در زمینه نانوالکترونیک بهموقع است، قابل استفاده است.
ویژگیها
- خودکفایی
- توضیح کاملی از جنبههای کلاسیک و کوانتومی رسانش در دستگاههای مقیاس نانومتری ارائه میدهد
- بر اصول اصلی تأکید میکند، این کتاب می تواند برای مهندسان برق و دانشمندان مواد مفید باشد و هیچ دوره قبلی در نیمه هادی ها لازم نیست
- پل الکترونیک مدرن را برجسته می کند، ابتدا فیزیک و سپس مهندسی را ارائه می کند. عوارض مربوط به رفتار کوانتومی
- شامل بسیاری از نمودارهای واضح و گویا و مجموعه مسائل فصل
- توضیحاتی از پسسیلیکون ارائه می دهد دستگاههایی مانند GaAs MOSFET، CNT-FET و ترانزیستور خلاء
- نشان میدهد که چرا مکانیک کوانتومی با دستگاههای مدرن به دلیل اندازه و الکترومغناطیسی آنها ضروری است. n خاصیت حمل و نقل
- درباره تمام مسائلی که خوانندگان را قادر می سازد تحقیقات خود را انجام دهند بحث می کند
فهرست مطالب :
Cover
Half Title
Series Page
Title Page
Copyright Page
Dedication
Contents
Preface
About the Author
PART I: Prerequisites: Quantum Mechanics and the Electronic States in Solids
CHAPTER 1: Quantum Mechanics
1.1. THE TWO-SLIT EXPERIMENT
1.2. THE SCHROEDINGER EQUATION, WAVEFUNCTIONS AND OPERATORS
1.3. PARTICLE IN A RECTANGULAR BOX
1.4. MORE QUANTUM MECHANICS, HEISENBERG’S UNCERTAINTY PRINCIPLE
1.5. STATISTICS OF ELECTRON OCCUPANCY, THE PAULI PRINCIPLE AND THE FERMI – DIRAC DISTRIBUTION
1.6. THE HYDROGEN ATOM AND THE ATOMS OF THE PERIODIC TABLE
1.7. BARRIER PENETRATION, TUNNELLING
1.8. PROBABILITY CURRENT DENSITY AND THE WKB APPROXIMATION
CHAPTER 2: Electron States in Solids
2.1. QUALITATIVE DESCRIPTION OF SOLIDS AND THEIR ENERGY BANDS
2.2. THE k-SPACE, BLOCH’S THEOREM AND BRILLOUIN ZONES
2.3. THE LCAO METHOD OF CALCULATING ENERGY LEVELS
2.4. QUICK REVISION OF THE CONCEPT OF A HOLE AND DOPING
2.5. VELOCITY OF ELECTRONS IN SOLIDS
2.6. THE CONCEPT OF EFFECTIVE MASS
2.7. CONCENTRATION OF CARRIERS IN SEMICONDUCTORS AND METALS
2.8. THE EFFECTIVE MASS EQUATION
PART II: Theory of Conduction
CHAPTER 3: Simple Classical Theory
of Conduction
3.1. EXTERNAL VOLTAGES AND FERMI LEVELS
3.2. COLLISIONS AND DRIFT MOBILITY
3.3. MECHANISMS OF SCATTERING
3.4. RECOMBINATION OF CARRIERS
3.5. DIFFUSION CURRENT
3.6. CONTINUITY EQUATIONS
3.7. THE IDEAL PN JUNCTION AT EQUILIBRIUM
3.8. THE IDEAL PN JUNCTION UNDER BIAS
3.9. THE NON-IDEAL, REAL PN JUNCTION
3.10. THE METAL–SEMICONDUCTOR OR SCHOTTKY JUNCTION
CHAPTER 4: Advanced Classical Theory of Conduction
4.1. THE NEED FOR A BETTER CLASSICAL THEORY OF CONDUCTION
4.2. THE BOLTZMANN EQUATION
4.3. SOLUTION OF THE BOLTZMANN EQUATION BY THE RELAXATION TIME APPROXIMATION
4.4. APPLICATION OF AN ELECTRIC FIELD–CONDUCTIVITY OF SOLIDS
4.5. DIFFUSION CURRENTS
4.6. GENERAL EXPRESSION FOR THE CURRENT DENSITY
4.7. APPLICATION OF A THERMAL GRADIENT, THE SEEBECK EFFECT
4.8. SATURATION OF DRIFT VELOCITY
4.9. GUNN EFFECT AND VELOCITY OVERSHOOT
4.10. THE (CLASSICAL) HALL EFFECT
CHAPTER 5: The Quantum Theory of Conduction
5.1. CRITIQUE OF THE BOLTZMANN EQUATION, REGIMES OF CONDUCTION
5.2. ELECTRONIC STRUCTURE OF LOW-DIMENSIONAL SYSTEMS
5.3. THE LANDAUER FORMALISM
5.4. THE EFFECTIVE MASS EQUATION FOR HETEROSTRUCTURES
5.5. TRANSMISSION MATRICES, AIRY FUNCTIONS
5.6. THE RESONANT TUNNELLING DIODE OR RTD
PART III: Devices
CHAPTER 6: Field Emission and Vacuum Devices
6.1. INTRODUCTION
6.2. THE 1-DIMENSIONAL WKB EQUATION
6.3. FIELD EMISSION FROM PLANAR SURFACES
6.4. THE 3-DIMENSIONAL WKB PROBLEM
6.5. FIELD EMISSION FROM CURVED SURFACES (ELECTRON GUNS)
6.6. THE VACUUM TRANSISTOR
CHAPTER 7: The MOSFET
7.1. INTRODUCTION
7.2. PRINCIPLE OF OPERATION OF THE MOSFET
7.3. SIMPLE CLASSICAL THEORY
7.4. ADVANCED CLASSICAL THEORY
7.5. QUANTUM THEORY OF THE MOSFET
7.6. TIME-DEPENDENT PERFORMANCE AND MOORE’S LAW
7.7. THE FINFET, A 3-DIMENSIONAL MOSFET
CHAPTER 8: Post-Si FETs
8.1. INTRODUCTION
8.2. SIMPLE THEORY OF THE HEMT
8.3. ADVANCED THEORY OF THE HEMT
8.4. THE III–V MOSFET
8.5. THE CARBON NANOTUBE FET, CNFET, OR CNTFET
APPENDIX A: Further Development of Quantum Mechanics, Angular Momentum, and Spin of the Electron
APPENDIX B: Lattice Vibrations
APPENDIX C: Impurity States in Semiconductors
APPENDIX D: Direct and Indirect Band-Gap and Optical Transitions
APPENDIX E: Proof of the Field Emission Formula
BIBLIOGRAPHY
INDEX
توضیحاتی در مورد کتاب به زبان اصلی :
Electronic Conduction: Classical and Quantum Theory to Nanoelectronic Devices provides a concise, complete introduction to the fundamental principles of electronic conduction in microelectronic and nanoelectronic devices, with an emphasis on integrating the quantum aspects of conduction.
The chapter coverage begins by presenting the classical theory of conduction, including introductory chapters on quantum mechanics and the solid state, then moving to a complete presentation of essential theory for understanding modern electronic devices. The author’s unique approach is applicable to microscale and nanoscale device simulation, which is particularly timely given the explosion in the nanoelectronics field.
Features
- Self-contained
- Gives a complete account of classical and quantum aspects of conduction in nanometer scale devices
- Emphasises core principles, the book can be useful to electrical engineers and material scientists, and no prior course in semiconductors is necessary
- Highlights the bridge to modern electronics, first presenting the physics, and then the engineering complications related to quantum behaviour
- Includes many clear, illustrative diagrams and chapter problem sets
- Gives an account of post-Silicon devices such as the GaAs MOSFET, the CNT-FET and the vacuum transistor
- Showcases why quantum mechanics is necessary with modern devices due to their size and corresponding electron transport properties
- Discusses all the issues that will enable readers to conduct their own research