توضیحاتی در مورد کتاب Electrospinning for Advanced Energy Storage Applications (Materials Horizons: From Nature to Nanomaterials)
نام کتاب : Electrospinning for Advanced Energy Storage Applications (Materials Horizons: From Nature to Nanomaterials)
عنوان ترجمه شده به فارسی : الکتروریسی برای کاربردهای پیشرفته ذخیره انرژی (افق مواد: از طبیعت تا نانومواد)
سری :
نویسندگان : Neethu T. M. Balakrishnan (editor), Raghavan Prasanth (editor)
ناشر : Springer
سال نشر : 2021
تعداد صفحات : 598
ISBN (شابک) : 9811588430 , 9789811588433
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 34 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Foreword
Contents
Editors and Contributors
Abbreviations
Symbols and Formulas
Units
1 The Great History of Lithium-Ion Batteries and an Overview on Energy Storage Devices
1.1 Introduction
1.2 Emergence of Energy Storage Devices
1.3 Next Generation Energy Storage Devices
1.3.1 Supercapacitors
1.3.2 Fuel Cells
1.4 Lithium Ion Batteries: History to the Present
1.5 Structure of Lithium Ion Batteries
1.6 Other Types of Lithium-Based Batteries
1.6.1 Lithium Iodide Battery
1.6.2 Lithium Air Battery
1.6.3 Lithium Redox Flow Battery
1.6.4 Lithium Sulfur Battery
1.7 Nobel Prize and Lithium Ion Battery 2019
1.7.1 Prof. John Bannister Goodenough
1.7.2 Prof. Michael Stanley Whittingham
1.7.3 Prof. Akira Yoshino
1.8 Draper Prize and Lithium Ion Battery (2014)
1.8.1 Prof. Rachid Yazami
1.8.2 Mr. Yoshio Nishi
1.9 Conclusion and Future Outlook
References
2 Electrospinning: The State of Art Technique for the Production of Nanofibers and Nanofibrous Membranes for Advanced Engineering Applications
2.1 Introduction
2.2 History of Electrospinning
2.3 Parameter Affecting Electrospinning
2.3.1 Solution Parameters
2.3.2 Process Parameters
2.3.3 Ambient Parameters
2.4 Applications of Electrospinning
2.4.1 Energy Storage Devices
2.4.2 Medicinal Field
2.4.3 Textile Industry
2.4.4 Environmental and Filtration
2.5 Conclusion
References
3 Electrospun Polyvinylidene Difluoride Membranes for High-Performance Application in Lithium Ion Batteries
3.1 Introduction
3.1.1 Polyvinyledene Difluoride Polymer Gel Electrolytes
3.2 Polyvinyledene Difluoride-Electrospun Membranes for Lithium Ion Batteries
3.3 Polyvinyledene Difluoride Blend Electrolytes
3.3.1 Polymer Blend Based on Thermoplastic Polyurethane (TPU)
3.3.2 Other Blends
3.4 Electrospun Composite Polyvinyledene Difluoride Polymer Electrolyte
3.4.1 Effect of SiO2 and TiO2 Fillers in Electrospun Polyvinylidene Difluoride
3.4.2 Other Type Fillers
3.5 Conclusion
References
4 Electrospun Nanofibrous Polyvinylidene Fluoride-co-Hexaflouropropylene-Based Polymer Gel Electrolytes for Lithium-Ion Batteries
4.1 Introduction
4.2 PVdF-co-HFP Nanofibers as Separators
4.2.1 Properties
4.2.2 Technique of Electrospinning
4.3 PVdF-co-HFP-Based Separators in LIBs
4.4 Electrolytes Used with PVdF-co-HFP Separators
4.4.1 Additives and Surface Modifications to PVdF-co-HFP Separator Membranes
4.5 Conclusions
References
5 Electrospun Polyacrylonitrile (PAN)-Based Polymer Gel Electrolytes for Lithium-Ion Batteries
5.1 Introduction
5.2 Preparation of Electrospun Polyacrylonitrile-Based Polymer Electrolytes
5.3 Preparation of Electrospun Polyacrylonitrile-Based Composite Polymer Electrolytes
5.4 Preparation of polyacrylonitrile-Based Blend Polymer Electrolytes
5.5 Electrochemical Properties of Electrospun Polyacrylonitrile-Based Polymer Electrolytes
5.6 Conclusion
References
7 Electrospun Silica-Based Polymer Nanocomposite Electrolytes for Lithium-Ion Batteries
7.1 Introduction
7.2 Composite Polymer Electrolytes for Lithium-Ion Batteries
7.3 Silica and Forms of Silica
7.4 Polymer Silica Nanocomposites for Lithium-Ion Batteries
7.5 Electrospun Silica Polymer Nanocomposite for Lithium-Ion Batteries
7.5.1 Addition of Silica into Polymer Matrix by Mechanical Blending Method
7.5.2 Addition of Silica into Polymer Matrix by in Situ Method
7.5.3 Electrospinning Electrospraying Technique (EET)
7.5.4 Addition of Silica-Based Compounds into Polymer Matrix
7.6 Conclusion
References
8 Electrospun PVdF and PVdF-co-HFP-Based Blend Polymer Electrolytes for Lithium Ion Batteries
8.1 Introduction
8.2 Polymer Blend Electrolytes
8.2.1 PVdF or PVdF-co-HFP-Based Blend Electrolytes
8.3 Conclusion
References
9 Electrospun Nanostructured Iron Oxide Carbon Composites for High-Performance Lithium Ion Batteries
9.1 Introduction
9.2 Anode Materials in Lithium Ion Batteries
9.3 Electrospun Fe2O3/Fe3O4 Anode
9.3.1 Fe2O3–Carbon Composite Nanofiber Anode
9.3.2 Fe3O4–Carbon Composite Nanofibers
9.4 Hollow α-Fe2O3 Electrospun Nanofibers
9.5 Graphene-Doped Carbon/Fe3O4 Porous Nanofibers
9.6 Conclusion
References
10 Electrospun Nanostructured Iron Oxides for High-Performance Lithium Ion Batteries
10.1 Introduction
10.2 Principle of Lithium Ion Batteries
10.3 Electrode Materials for Lithium Ion Batteries
10.3.1 Positive Electrode (Cathode) for Lithium Ion Batteries
10.3.2 Anode Materials for Lithium Ion Batteries
10.4 Electrospun-Based Iron Oxide Anodes for Lithium Ion Batteries
10.4.1 Electrospun Fe2O3/Fe3O4 Nanostructures
10.5 Conclusion
References
11 Electrospun Cobalt Based Composites as Anodes for Lithium-Ion Batteries
11.1 Introduction
11.2 Anode Materials for Lithium-Ion Batteries
11.3 Electrospinning Process
11.4 Electrospun Nanofibers for Lithium-Ion Batteries
11.5 Structure and Properties of Cobalt Oxides
11.5.1 Structure of Cobalt Monoxide
11.5.2 Electrospun Cobalt Monoxide for Lithium-Ion Batteries
11.5.3 Structure of Cobalt (II, III) Oxide
11.5.4 Electrospun Cobalt (II, III) Oxide as Anodes for Lithium-Ion Batteries
11.5.5 Ternary Oxides of Cobalt as Anodes for Lithium-Ion Batteries
11.6 Conclusion
References
12 Electrospun Manganese Oxide-Based Composites as Anodes for Lithium-Ion Batteries
12.1 Introduction
12.2 Synthesis of Pristine Manganese Oxides by Electrospinning
12.3 Synthesis of MnOx-Based Composites by Electrospinning
12.4 Electrochemical Performances of Electrospun Mnox-Based Composites in LIB Anodes
12.5 Conclusion
References
13 Electrospun Tin Based Composites as Anodes for Lithium-Ion Batteries
13.1 Introduction
13.2 Metallic Sn Anode Materials Based on Electrospinning Technique
13.3 Sn-Based Nonmetallic Compound Anodes
13.3.1 SnO2
13.3.2 SnS and SnSe
13.4 Sn-Based Intermetallic Compound Anodes
13.4.1 SnSb
13.4.2 Co–Sn and Cu–Sn
13.5 Conclusion
References
15 Electrospun Silicon-Based Nanocomposite Anodes for Lithium-Ion Batteries
15.1 Introduction
15.2 Challenges in Si-Based LIBs
15.2.1 Pulverization
15.2.2 Morphology and Volume Changes
15.2.3 Solid Electrolyte Interphase (SEI)
15.3 Electrospinning Method for Synthesis
15.4 Advantages in 1D CNF/Si Composite for LIBs
15.5 LIBs Performance of Electrospun-Based Synthesized Si Composites
15.6 Conclusions
References
16 Lithium Cobalt Oxide (LiCoO2): A Potential Cathode Material for Advanced Lithium-Ion Batteries
16.1 Introduction
16.2 LiCoO2 Nanostructures of Different Morphology
16.3 Effect of Coating on LiCoO2 Nanostructures
16.4 Electrospun LiCoO2 Composites
16.4.1 Metal/LiCoO2 Composites
16.4.2 Carbon/LiCoO2 Composite
16.4.3 Metal Oxide/LiCoO2 Composite
16.5 Conclusion
References
17 Electrospun Lithium Iron Phosphate (LiFePO4) Electrodes for Lithium-Ion Batteries
17.1 Introduction
17.2 Structure of Lithium Iron Phosphate (LFP)
17.3 Precursors for Electropsun Lithium Iron Phosphate Cathodes
17.4 Enhancing the Performance of Electrospun Lithium Iron Phosphate Cathode by Structural Modification
17.4.1 Composites of Lithium Iron Phosphate with Conducting Materials
17.4.2 Insertion Compounds of Lithium Iron Phosphate and Their Modifications
17.5 Conclusion
References
18 Electrospun Fibrous Vanadium Pentoxide Cathodes for Lithium-Ion Batteries
18.1 Introduction
18.2 Synthesis of Electropsun Vanadium Pentoxide Cathode by Using Different Precursors
18.3 Structure and Property of Electrospun V2O5
18.4 Methods to Improve the Electrochemical Properties of Electrospunned V2O5
18.4.1 Doping
18.4.2 Composite with Carbon Materials
18.4.3 Dependence of Synthesis Parameters
18.5 Electrochemical Properties Electrospun V2O5
18.6 Electrochemical Properties of Doped Electrospun V2O5
18.7 Electrospun V2O5 for Energy Storage Solutions other than LIBs
18.8 Conclusion and Future Outlook
References
19 Electrospun Manganese Oxide-Based Composites as Cathodes for Lithium-Ion Batteries
19.1 Introduction
19.2 Electrospun Mn-Based Layered Cathode Materials
19.3 Electrospun Mn-Based Li-Rich Layered Cathode Materials
19.4 Electrospun Mn-Based Spinel Cathode Materials
19.5 Conclusions
References
20 Electrospun Mixed Oxide-Based Composites as Cathodes for Lithium-Ion Batteries
20.1 Electrospinning Technique for Lithium-Ion Batteries—An Overview
20.2 Electrospinning
20.2.1 Principle of Electrospinning
20.2.2 Parameters of Electrospinning
20.3 Lithium-Ion Batteries
20.4 Electrospun Nanofiber-Based Lithium-Ion Batteries
20.4.1 Mixed Nickel-Cobalt Dioxide, LiNi1−YCoyO2
20.4.2 Lithium Manganese Dioxide, LiMnO2
20.4.3 Mixed Manganese-Cobalt Dioxide, LiMn1-YCoyO2
20.4.4 Mixed Nickel-Manganese Dioxide, LiNi1−YMnyO2, Multi-electron Redox Systems
20.4.5 Mixed Nickel-Manganese-Cobalt Dioxide, LiNi1−Y−ZMnyCozO2
20.4.6 Lithium-Rich Mixed Metal Dioxides, Li1+XM1−XO2
20.4.7 Electrospun Single-Crystalline Fork-like K2V8O21
20.4.8 Lithium Iron Phosphate (LiFePO4)—3D Carbon Nanofiber Composites
20.5 Conclusion
References