Engineering Haptic Devices (Springer Series on Touch and Haptic Systems)

دانلود کتاب Engineering Haptic Devices (Springer Series on Touch and Haptic Systems)

34000 تومان موجود

کتاب مهندسی دستگاه‌های لمسی (سری اسپرینگر در سیستم‌های لمسی و لمسی) نسخه زبان اصلی

دانلود کتاب مهندسی دستگاه‌های لمسی (سری اسپرینگر در سیستم‌های لمسی و لمسی) بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد

این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 9


توضیحاتی در مورد کتاب Engineering Haptic Devices (Springer Series on Touch and Haptic Systems)

نام کتاب : Engineering Haptic Devices (Springer Series on Touch and Haptic Systems)
ویرایش : 3
عنوان ترجمه شده به فارسی : مهندسی دستگاه‌های لمسی (سری اسپرینگر در سیستم‌های لمسی و لمسی)
سری :
نویسندگان : , ,
ناشر : Springer
سال نشر : 2022
تعداد صفحات : 704
ISBN (شابک) : 3031045351 , 9783031045356
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 19 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


‘Series Editors’ Foreword
Note from the Book Editors
Preface
Contents
Editors and Contributors
Symbols
Indices and Distinctions
Part I Basics
1 Motivation and Application of Haptic Systems
1.1 Research Disciplines
1.2 Some Broad Scope on Haptics
1.3 Philosophical and Social Aspects
1.3.1 Haptics as a Physical Being\'s Boundary
1.3.2 Formation of the Sense of Touch
1.3.3 Touchable Art and Haptic Aesthetics
1.4 Technical Definitions of Haptics
1.4.1 Definitions of Haptic Interactions
1.4.2 Taxonomy of Haptic Perception
1.5 Application Areas of Haptic Systems
1.5.1 Telepresence, Teleaction and Assistive Systems
1.5.2 Virtual Environments
1.5.3 Non-invasive Medical Applications
1.5.4 Communication
1.5.5 Completing the Picture
1.5.6 Why Use a Haptic System?
1.6 Conclusions
References
2 Haptics as an Interaction Modality
2.1 Haptic Perception
2.1.1 Physiological Basis
2.1.2 Psychophysical Description of Perception
2.1.3 Characteristic Values of Haptic Perception
2.1.4 Further Aspects of Haptic Perception
2.2 Concepts of Interaction
2.2.1 Haptic Exploration of Objects
2.2.2 Active and Passive Touch
2.2.3 Gestures
2.2.4 Human Movement Capabilities
2.3 Interaction Using Haptic Systems
2.3.1 Haptic Displays and General Input Devices
2.3.2 Assistive Systems
2.3.3 Haptic Interfaces
2.3.4 Manipulators
2.3.5 Teleoperators
2.3.6 Comanipulators
2.3.7 Haptic System Control
2.4 Engineering Conclusions
2.4.1 A Frequency-Dependent Model of Haptic Properties
2.4.2 Stiffnesses
2.4.3 One Kilohertz—Significance for the Mechanical Design?
2.4.4 Perception-Inspired Concepts for Haptic System Design
References
3 The User\'s Role in Haptic System Design
3.1 The User as Mechanical Load
3.1.1 Mapping of Frequency Ranges onto the User\'s Mechanical Model
3.1.2 Modeling the Mechanical Impedance
3.1.3 Grips and Grasps
3.1.4 Measurement Setup and Equipment
3.1.5 Models
3.1.6 Modeling Parameters
3.1.7 Comparison with Existing Models
3.1.8 Modeling User\'s Variability
3.1.9 Final Remarks on Impedances
3.2 The User as a Measure of Quality
3.2.1 Resolution of Haptic Systems
3.2.2 Errors and Reproducibility
3.2.3 Quality of Haptic Interaction
3.2.4 Perceptional Dimensions
References
4 Development of Haptic Systems
4.1 Application of Mechatronic Design Principles to Haptic Systems
4.1.1 Stage 1: System Requirements
4.1.2 Stage 2: System Design
4.1.3 Stage 3: Modeling and Design of Components
4.1.4 Stage 4: Realization and Verification of Components and System
4.1.5 Stage 5: Validation of the Haptic System
4.2 General Design Goals
4.3 Technical Descriptions of Parts and System Components
4.3.1 Single Input—Single Output (SISO) Descriptions
4.3.2 Network Parameter Description
4.3.3 Finite Element Methods (FEM)
4.3.4 Description of Kinematic Structures
References
Part II Designing Haptic Systems
5 Identification of Requirements
5.1 Definition of Application—The Right Questions to Ask
5.1.1 Experiments with the Customer
5.1.2 General Design Guidelines
5.2 Interaction Analysis
5.3 Technical Solution Clusters
5.3.1 Cluster ① — Kinaesthetic
5.3.2 Cluster ②—Surface-Tactile
5.3.3 Cluster ③—Vibro-Tactile
5.3.4 Cluster ④—Vibro-Directional
5.3.5 Cluster ⑤—Omni-Directional
5.3.6 General Requirement Sources
5.4 Safety Requirements
5.4.1 Safety Standards
5.4.2 Definition of Safety Requirements from Risk Analysis
5.5 Requirement Specifications of a Haptic System
5.6 Haptic Design of Mechanical Controls
5.6.1 Rotary Switches
5.6.2 Friction
5.7 Push Buttons
5.7.1 Characteristic Curve
5.7.2 The Snap
5.7.3 Event-Based Perception
5.7.4 Relevance of the Probes\' Impedance
References
6 General System Structures
6.1 Open-Loop and Closed-Loop Systems
6.2 Open-Loop and Closed-Loop Systems Comparison
6.3 Impedance and Admittance Concept
6.4 Open-Loop Impedance Controlled Devices
6.5 Closed-Loop Impedance Controlled Devices
6.6 Open-Loop Admittance Controlled
6.7 Closed-Loop Admittance Controlled Devices
6.8 Qualitative Comparison of the Internal Structures of Haptic Systems
6.9 How to Choose a Suitable System Structure
7 Control of Haptic Systems
7.1 System Description
7.1.1 Linear State Space Description
7.1.2 Nonlinear System Description
7.2 System Stability
7.2.1 Analysis of Linear System Stability
7.2.2 Analysis of Non-linear System Stability
7.3 Control of Multi-input Systems
7.3.1 Position Control
7.3.2 Trajectory Control
7.4 Control Law Design for Haptic Systems
7.4.1 Structuring of the Control Design
7.4.2 Requirement Definition
7.4.3 General Control Law Design
7.5 Control of Teleoperation Systems
7.5.1 Two-Port Representation
7.5.2 Transparency
7.5.3 General Control Model for Teleoperators
7.5.4 Stability Analysis of Teleoperators
7.5.5 Effects of Time Delay
7.6 Control of Rehabilitation Robots
7.6.1 Control Strategies
7.6.2 Friction and Backlash Compensation
7.7 Conclusion
References
8 Kinematic Design
8.1 Introduction
8.1.1 Major Design Goals
8.1.2 Basic Definitions
8.1.3 Classification of Mechanisms
8.1.4 Design Steps
8.2 Design Step 1: Defining the Mechanism\'s Structure
8.2.1 Synthesis of Serial Mechanisms
8.2.2 Synthesis of Parallel Mechanisms
8.3 Design Step 2: Kinematic Equations
8.3.1 Solving Kinematic Equations in Serial Mechanisms
8.3.2 Solving Kinematic Equations in Parallel Mechanisms
8.4 Design Step 3: Dimensioning a Haptic Kinematic
8.4.1 Workspace
8.4.2 Isotropy and Singular Positions
8.4.3 Velocities
8.4.4 Dynamics
8.5 Role of Simulation
8.5.1 Example of Software Used in Simulation
8.5.2 Optimizing the Workspace
8.5.3 Solving Kinematic and Dynamic Equations
References
9 Actuator Design
9.1 General Facts About Actuator Design
9.1.1 Overview of Actuator Principles
9.1.2 Actuator Selection Aid Based on Its Dynamics
9.1.3 Gears
9.2 Electrodynamic Actuators
9.2.1 The Electrodynamic Effect and Its Influencing Variables
9.2.2 Actual Actuator Design
9.2.3 Actuator Electronics
9.2.4 Examples for Electrodynamic Actuators in Haptic Devices
9.2.5 Conclusion About the Design of Electrodynamic Actuators
9.3 Piezoelectric Actuators
9.3.1 The Piezoelectric Effect
9.3.2 Designs and Properties of Piezoelectric Actuators
9.3.3 Design of Piezoelectric Actuators for Haptic Systems
9.3.4 Procedure for the Design of Piezoelectric Actuators
9.3.5 Piezoelectric Actuators in Haptic Systems
9.4 Electromagnetic Actuators
9.4.1 Magnetic Energy
9.4.2 Design of Magnetic Circuits
9.4.3 Examples for Electromagnetic Actuators
9.4.4 Magnetic Actuators in Haptic Devices
9.4.5 Conclusion About the Design of Magnetic Actuators
9.5 Electrostatic Actuators
9.5.1 Definition of the Electric Field
9.5.2 Designs of Capacitive Actuators with Air-Gap
9.5.3 Active Skin
9.5.4 Dielectric Elastomer Actuators
9.5.5 Designs of Dielectric Elastomer Actuators
9.5.6 Electro-Rheological Fluids
9.6 Special Designs of Haptic Actuators
9.6.1 Haptic-Kinaesthetic Devices
9.6.2 Haptic-Tactile Devices
References
10 Sensor Design
10.1 What is a Sensor?—A Definition
10.2 Classification According to Sensing Principles
10.3 Classification According to Measurand and Application Field
10.4 Constraints in Haptic Systems
10.4.1 Topology of the Device
10.4.2 Contact Situation
10.4.3 Mechanical Properties of Measuring Objects
10.4.4 Texture of Measuring Objects
10.4.5 Interaction and User Movements
10.5 Force Sensor Design
10.5.1 Sensing Principles
10.5.2 Selection of a Suitable Sensor
10.6 Tactile Sensing and Touch Sensors
10.6.1 Resistive Touch Sensors
10.6.2 Capacitive Touch Sensors
10.6.3 Other Principles
10.7 Positioning and Displacement Sensors
10.7.1 Basic Principles of Position Measurement
10.7.2 Requirements in the Context of Haptics
10.7.3 Optical Sensors
10.7.4 Magnetic Sensors
10.7.5 Other Displacement Sensors
10.7.6 Electronics for Absolute Positions Sensors
10.7.7 Conclusion on Position Measurement
10.8 Inertial Sensors–Measurement of Velocity and Acceleration
10.8.1 Measurement of Velocity
10.8.2 Acceleration Measurement
10.9 Imaging Sensors
10.10 Temperature Measurement
10.10.1 Thermoresistors
10.10.2 Thermocouples
10.11 Conclusion
References
11 Interface Design
11.1 Introduction
11.2 Border Frequency of the Transmission Chain
11.2.1 Bandwidth in a Telemanipulation System
11.2.2 Cloud-Enabled Communication
11.2.3 Bandwidth in a Simulator-System
11.2.4 Data Rates and Latencies
11.2.5 What is a Raspberry Pi?
11.3 Concepts for Bandwidth Reduction
11.3.1 Analysis of the Required Dynamics
11.3.2 Ergonomic Standards for Haptic and Tactile Interactions
11.3.3 Local Haptic Model in the Controller
11.3.4 Event-Based Haptics
11.3.5 Movement Extrapolation
11.3.6 Compensation of Extreme Dead Times
11.3.7 Compression
11.4 Specifications for a Portable Haptic Interface
11.5 Final Remarks About Interface Technology
References
12 Haptic Software Design
12.1 Introduction
12.1.1 Virtual Reality
12.1.2 Mixed Reality
12.1.3 Touch User Interfaces
12.1.4 Structure and Contents
12.2 Haptic Rendering
12.2.1 Haptic Model
12.2.2 Action
12.2.3 Response
12.2.4 Data-Driven Modeling
12.2.5 Measurement-Based Modeling
12.3 Deterministic Data-Driven Modeling
12.3.1 Tool Deformation Modeling
12.3.2 Action and Response Spaces
12.3.3 Data Acquisition and Preprocessing
12.3.4 Model Training
12.4 Stochastic Data-Driven Models
12.4.1 Haptic Texture Modeling Pipeline
12.4.2 Data Processing and Segmentation
12.4.3 Bottom-Up Agglomerative Segmentation
12.4.4 Multi-trial Data Collection
12.4.5 Online Segmentation of Motion Primitives
12.4.6 Interpolation Model
12.4.7 Real-Time Texture Rendering
12.5 Physics-Based Modeling
12.5.1 Hyper-Elastic Material Modeling
12.5.2 Deformation Features
12.5.3 Model Identification
12.5.4 Finite Elements Method Solver
12.6 Combination of Physics-Based and Data-Driven Models
12.6.1 Plasticity Modeling
12.6.2 Elasto-Plastic Decomposition
12.6.3 Data-Driven Modeling of Plastic Flow
12.6.4 Policy Model
12.6.5 Model Training
12.6.6 Recording Setup and Sample Set
12.6.7 Rendering Collision Forces
12.7 Conclusion
References
13 Evaluation of Haptic Systems
13.1 System-Centered Evaluation Methods
13.1.1 Workspace
13.1.2 Output Force Depending Values
13.1.3 Output Motion Depending Values
13.1.4 Mechanical Properties
13.1.5 Impedance Measurements
13.1.6 Special Properties
13.1.7 Measurement of Psychophysical Parameters
13.2 Task-Centered Evaluation Methods
13.2.1 Task Performance Tests
13.2.2 Identification of Haptic Properties and Signals
13.2.3 Information Input Capacity (Fitts\' Law)
13.3 User-Centered Evaluation Methods
13.3.1 Workload
13.3.2 Subjective Evaluation
13.3.3 Learning Effects
13.3.4 Effects on Performance in other Domains
13.4 Formal Framework for Evaluation
13.4.1 Validation
13.4.2 Verification
13.4.3 Usability
13.4.4 Handling Requirements for Devices
13.4.5 Satisfaction (ISO)
13.5 Evaluation of Haptic Systems, Industial Standards
13.5.1 Evaluation of Control\'s Subjective Haptic Feedback
13.5.2 Discussion and Outlook
13.6 Conclusion
References
14 Examples of Haptic System Development
14.1 Touch Input Devices
14.1.1 Direction of the Stimulation
14.1.2 Lateral Differences of Excitation Directions
14.1.3 Increasing the Mass—Touchpad as a Sculptural Element
14.1.4 The 2020\'s S-Class Center Information Display and the EQS\'MBUX Hyperscreen
14.1.5 Controlling the Haptic Feedback
14.2 HapCath—Haptic Catheter
14.2.1 Introduction
14.2.2 Deriving Requirements
14.2.3 Design and Development
14.2.4 Verification and Validation
14.2.5 Design Updates and Lessons Learned
14.2.6 Conclusion and Outlook
14.3 FingHap—Haptic Finger Rehabilitation Device
14.3.1 Introduction
14.3.2 Design and Prototyping
14.3.3 Design an Adaptive Fuzzy Sliding Mode Controller for the System
14.3.4 Cloud Enabled Communication
14.3.5 System Setup and Data Communication
14.3.6 Experiments and Results
14.3.7 Conclusion and Outlook
References
15 Conclusion
Appendix Impedance Values of Grasps
Appendix Index
Index




پست ها تصادفی