توضیحاتی در مورد کتاب Engineering Physics : For PTU (Subject Code: BTPH-101)
نام کتاب : Engineering Physics : For PTU (Subject Code: BTPH-101)
عنوان ترجمه شده به فارسی : فیزیک مهندسی: برای PTU (کد موضوع: BTPH-101)
سری :
نویسندگان : S. Mani Naidu
ناشر : Pearson Education
سال نشر : 2011
تعداد صفحات : 284
ISBN (شابک) : 9788131761847 , 9789332509511
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 4 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Contents
Preface
Acknowledgements
Roadmap to the Syllabus
Chapter 1: Electromagnetic Waves and Dielectrics
1.1 Introduction
1.2 Gradient of a scalar
1.3 Curl of a vector
1.4 Divergence of a vector
1.5 Relationship between the electric field (E) and electric potential (V)
1.6 The displacement current
1.7 Maxwell’s equations
1.8 Electromagnetic waves in free space and their velocity
1.9 Poynting vector
1.10 Electromagnetic spectrum
1.11 Dielectric polarization
1.12 Types of polarization
(a) Dipolar or orientational polarization
(b) Ionic polarization
(c) Electronic polarization
(d) Space charge (or) Interfacial polarization
Formulae
Solved Problems
Multiple-choice Questions
Answers
Review Questions
Chapter 2: Magnetic Materials and Superconductivity
Part A: Magnetic materials
2.1 Introduction
2.2 Diamagnetic materials
2.3 Paramagnetic materials
2.4 Ferromagnetic materials
2.5 Anti-ferromagnetic materials
2.6 Ferrimagnetic materials [Ferrites]
2.7 Magnetic anisotropy
2.8 Magnetostriction
2.9 Production of ultrasonic waves by magnetostriction
Part B: Super conductivity
2.10 Introduction
2.11 Significances or general features of super conductors
2.12 Meissnereffect and superconductor as ideal diamagnetic material
2.13 Type-I and Type-II Superconductors
2.14 London equations
2.15 BCS Theory
Description
Coherent length
BCS ground state
Formulae
Solved Problems
Multiple-choice Questions
Answers
Review Questions
Chapter 3: Elements of Crystallography
3.1 Introduction
Distinction between crystalline and amorphous solids
3.2 Space lattice or crystal lattice
3.3 The basis and crystal structure
3.4 Unit cell and lattice parameters
3.5 Crystal systems and bravais lattices
3.6 Crystal planes, directions and miller indices
3.7 Characteristic and continuous X-rays
3.8 Diffraction of X-rays by crystal planes and Bragg’s law
3.9 Bragg’s spectrometer
3.10 X-ray radiography
Formulae
Solved Problems
Multiple-choice Questions
Answers
Review Questions
Chapter 4: Lasers
4.1 Introduction
4.2 Spontaneous and stimulated emission
4.3 Einstein’s coefficients
4.4 Population inversion and pumping mechanisms
4.5 Components of a laser system
4.6 Helium–Neon gas [He–Ne] laser
4.7 Ruby laser
4.8 Semi conductor laser
4.9 Carbon dioxide laser
4.10 Applications of lasers
4.11 Holography
(a) Introduction
(b) Basic principle of holography
(c) Recording of image on a holographic plate
(d) Reconstruction of image from a hologram
(e) Applications of holography
Formula
Solved Problems
Multiple-choice Questions
Answers
Review Questions
Chapter 5: Fibre Optics
5.1 Introduction
5.2 Principle of optical fibre, acceptance angle and acceptance cone
5.3 Numerical aperture (NA)
5.4 Step index and graded index fibres –Transmission of signals in them
5.5 Normalized frequency (or V-number) and modes of propagation
5.6 Material dispersion and pulse broadeningin optical fibres
5.7 Splicing
5.8 Connectors
5.9 Couplers
5.10 Applications of optical fibres
(i) Sensing applications
(a) Displacement sensors
(b) Liquid level sensor
(c) Temperature and pressure sensor
(d) Chemical sensors
(ii) Medical applications
(a) Endoscope
Formulae
Solved Problems
Multiple-choice Questions
Answers
Review Questions
Chapter 6: Special Theory of Relativity
6.1 Introduction
6.2 Absolute frame of reference and ether
6.3 The Michelson–Morley experiment
6.3.1 Experimental set-up
6.3.2 Explanations for negative result
6.4 Postulates of special theory of relativity
6.5 Lorentz transformation of space and time
6.6 Length contraction
6.7 Time dilation
6.8 Concept of simultaneity
6.9 Addition of velocities
6.10 Variation of mass with velocity
6.11 Mass–energy equivalence
6.12 Energy and momentum relation
Formulae
Solved Problems
Multiple-choice Questions
Answers
Review Questions
Chapter 7: Quantum Theory
7.1 Need and origin of quantum concept
7.2 Wave particle duality–Matter waves
Matter waves
Properties of matter waves
7.3 Phase and group velocities
(a) Phase velocity
Group velocity
Expression for group velocity
Relation between group velocity and phase velocity
Relation between group velocity and particle velocity
7.4 Uncertainty principle
7.5 Schrödinger’s time dependent and time independent wave equation
7.6 Physical significance of wave function
7.7 Normalization of wave function
7.8 Eigen functions and Eigen values
7.9 Particle in a potential box
(a) Particle in a one-dimensional box [or one dimensional potential well]
Determination of B by normalization
Probability of location of the particle
(b) Particle in a rectangular three-dimensional box
Formulae
Solved Problems
Multiple-choice Questions
Answers
Review Questions
Chapter 8: Nanophysics
8.1 Introduction
8.2 Nanoscale
8.3 Surface to volume ratio
Spherical material
8.4 Electron confinement
Quantum confinement effects
8.5 Nanomaterials
8.6 Nanoparticles (1D, 2D, 3D)
Quantum wells
Quantum wires
Quantum dots
8.7 Unusual properties of nanomaterials
(a) Physical properties
(i) Geometric structure
(ii) Optical properties
(iii) Thermal properties
(iv) Magnetic properties
(v) Electronic properties
(vi) Mechanical properties
(b) Chemical properties
8.8 Fabrication of nanomaterials
8.9 Synthesis (or production) of nanomaterials
(i) Plasma arcing
(ii) Sol–gel method
(iii) Chemical vapour deposition
(iv) Ball milling
(v) Electrodeposition
8.10 Carbon nanotubes
(a) Introduction
(b) Formation of nanotubes
(c) Properties of nanotubes
(d) Applications of nanotubes
8.11 Applications of nanomaterials
Multiple-choice Questions
Answers
Review questions
Solved Question Papers
Index