Engineering with Polymers, 2nd Edition

دانلود کتاب Engineering with Polymers, 2nd Edition

36000 تومان موجود

کتاب مهندسی با پلیمرها، ویرایش دوم نسخه زبان اصلی

دانلود کتاب مهندسی با پلیمرها، ویرایش دوم بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 13


توضیحاتی در مورد کتاب Engineering with Polymers, 2nd Edition

نام کتاب : Engineering with Polymers, 2nd Edition
عنوان ترجمه شده به فارسی : مهندسی با پلیمرها، ویرایش دوم
سری :
نویسندگان : ,
ناشر :
سال نشر :
تعداد صفحات : 502
ISBN (شابک) : 9780748739875 , 0748739874
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 398 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover\nHalf Title\nTitle\nCopyright\nContents\nPreface to second edition\nPreface to first edition\n1 Introduction\n 1.1 Engineering with polymers\n 1.1.1 Examples of engineered products\n 1.1.2 Engineering the making of polymeric products\n 1.2 Predicting performance\n 1.2.1 Extruded plastics pipes\n 1.2.2 Extrusion of pipe through a die\n 1.2.3 Melt flow in an injection mould\n 1.2.4 Fibre-plastics composites\n 1.2.5 Rubber springs\n 1.3 Functionality of products\n 1.4 Concluding remarks\n2 Aspects of polymer physics\n 2.1 Introduction\n 2.2 Linear and network polymers\n 2.3 Names of polymers\n 2.4 Thermoplastics\n 2.5 Microstructure\n 2.6 Molecular mobility\n 2.6.1 Amorphous polymers\n 2.6.2 Partially crystalline polymers\n 2.6.3 Molecular movement below Tg\n 2.7 Crosslinked plastics\n 2.8 Crosslinked rubber polymers\n 2.9 Molecular orientation\n 2.10 Some broad generalizations\n Problems\n Further reading\n3 Plastics and rubber components and compounds\n 3.1 Introduction\n 3.2 Polymers as a class of materials\n 3.2.1 Plastics pipes and fittings\n 3.2.2 Radial tyres for car wheels\n 3.2.3 General properties of polymers\n (a) Properties of polymers\n (b) Some special features of rubber polymers\n (c) Some special features of plastics\n 3.3 Detailed properties of polymers\n 3.3.1 Thermoplastics\n 3.3.2 Crosslinked plastics\n 3.3.3 Vulcanized rubber compounds\n 3.4 The need for compounds\n 3.4.1 Processing into a form-stable shape\n 3.4.2 General survival properties\n 3.4.3 Mechanical and load-bearing properties\n 3.4.4 Examples of compounds\n (a) Rubber\n (b) Plastics\n Problems\n Further reading\n Plastics and rubber materials\n Compounds\n4 Important polymer processing methods\n 4.1 The main concepts\n 4.2 Batch mixing process\n 4.2.1 Internal mixer\n 4.2.2 Two-roll mill\n 4.3 Extrusion processes\n 4.3.1 Screw extrusion\n (a) Extruder\n (b) Mixing and mixing elements\n (c) Extrusion dies\n 4.3.2 Calendering\n 4.4 Moulding processes\n 4.4.1 Injection moulding\n 4.4.2 Reaction injection moulding (RIM)\n 4.4.3 Compression moulding\n 4.4.4 Transfer moulding\n 4.4.5 Moulding glass mat thermoplastic (GMT) products\n 4.4.6 Extrusion blow moulding\n 4.4.7 Thermoforming\n 4.5 Contact moulding techniques\n 4.5.1 Hand lay-up\n 4.5.2 Spray-up\n 4.5.3 Resin transfer moulding (RTM)\n 4.5.4 Matched-tool moulding\n 4.6 Continuous fibre techniques\n 4.6.1 Filament winding\n 4.6.2 Pultrusion\n Problems\n Further reading\n5 Stiffness of polymer products\n 5.1 Stiffness of plastics: elementary concepts\n 5.1.1 Modulus from the conventional tensile test\n 5.1.2 Effect of composition on modulus\n 5.1.3 Long-term loading of plastics\n (a) Creep tests and data for plastics\n (b) Representation ol creep data\n (c) Stress relaxation in plastics\n 5.1.4 Prediction of long-term stiffness of plastic products under constant load or deformation\n (a) Principle of correspondence\n (b) Sample stillness calculations\n (c) Need for improved stiffness\n Problems\n 5.2 Stiffness of plastics: a more general approach\n 5.2.1 Viscoelasticity\n 5.2.2 Superposition\n (a) Superimposed load\n (b) Recovery from creep\n (c) Integral form of superposition\n (d) Dynamic modulus; relation to creep modulus\n 5.2.3 Models for viscoelastic behaviour\n (a) Spring and dashpot models\n (b) Exponential function of time\n 5.2.4 Deviations from viscoelastic behaviour\n (a) Non-linear stress-strain curve\n (b) Physical aging\n 5.2.5 Time-dependent buckling\n 5.2.6 Temperature-dependent stiffness\n (a) Time-temperature equivalence\n (b) Modulus as a function of temperature\n Problems\n 5.3 Stiffness of vulcanized rubber\n 5.3.1 Mechanical properties\n (a) Stress-strain relationships for short-term loading\n (b) Effect of reinforcing fillers\n (c) Creep and stress relaxation\n (d) Dynamic properties of rubber\n 5.3.2 Rubber springs\n (a) Shear stiffness of bonded rubber spring units\n (b) Compressive stiffness of bonded rubber spring units\n Problems\n Further reading\n Stiffness of plastics\n Stiffness of vulcanized rubber\n6 Strength of polymer products\n 6.1 Introduction\n 6.2 The traditional approach\n 6.2.1 Short-term tensile strength\n (a) Brittle failure\n (b) Ductile failure\n (c) Influence of tensile speed and temperature\n (d) Failure criteria for multiaxial stress\n 6.2.2 Failure under long-term load\n (a) Constant load\n (b) Cyclic (fatigue) load\n 6.2.3 Factors promoting a ductile-brittle transition\n (a) Stress and design features\n (b) Polymer and compound features\n (c) Processing features\n (d) Environmental factors\n (e) Environmental stress cracking\n 6.2.4 Designing to avoid failure\n (a) Design brief for load bearing\n (b) Basis for the calculation\n (c) Safety factor\n (d) Maximum strain approach\n Problems\n 6.3 The fracture mechanics approach\n 6.3.1 Introduction\n 6.3.2 Energy approach to fracture\n 6.3.3 Stress intensity approach to fracture\n (a) Stress intensity factor (opening mode)\n (b) Fracture toughness\n (c) Relationship between G and K\n 6.3.4 Time dependence of fracture\n (a) Crack growth under constant load\n (b) Crack growth under cyclic load\n 6.3.5 Ductile-brittle transition revisited\n (a) Influence of crack depth a\n (b) Local yielding near the crack tip\n 6.3.6 Measurement of fracture parameters\n 6.3.7 Impact strength\n (a) Drop testing\n (b) Pendulum impact tests\n (c) Pendulum impact tests on cracked bars\n Problems\n Further reading\n Traditional approach\n Fracture mechanics approach\n7 Fibre-polymer composites\n 7.1 Introduction\n 7.1.1 Approaches to design\n 7.1.2 Some interesting features of fibre-plastics composites\n (a) Unidirectional lamina\n (b) Angle-ply laminate\n (c) Cross-ply laminate\n (d) Chopped strand mat laminate\n Problem\n 7.2 Micromechanics\n 7.2.1 Vocabulary and assumptions of simple micromechanics\n 7.2.2 Stiffness\n 7.2.3 Strength\n (a) Longitudinal tensile strength, σ^1T\n (b) Transverse tensile strength, σ^2T\n (c) In-plane shear strength, τ^12\n (d) Compressive strength, σ^1c and σ^2c\n (e) Strength under combined stress\n 7.2.4 Coefficients of thermal expansion\n 7.2.5 Laminae based on other arrangements of fibres\n 7.2.6 Prediction of performance\n 7.2.7 Fibre length\n 7.2.8 Select database for continuous fibre-reinforced composites\n Problems\n 7.3 Macromechanics of a lamina\n 7.3.1 Hooke’s law for principal directions\n (a) Isotropic material\n (b) Anisotropic behaviour\n (c) Orthotropic behaviour\n 7.3.2 Transformation of axes for stress or strain\n 7.3.3 Stress-strain relationships under off-axis loading\n 7.3.4 Failure under off-axis loading\n 7.3.5 Compatibility and equilibrium in a lamina\n (a) Strain-displacement relationships\n (b) Stress and moment resultants\n (c) Lamina stiffness and compliance\n Problems\n 7.4 Stiffness of laminates\n 7.4.1 Compatibility and equilibrium in a laminate\n 7.4.2 Laminate stiffness\n (a) General stillness relationship\n (b) Special cases\n (c) Calculation of laminate stiffness matrices\n 7.4.3 Laminate compliance\n 7.4.4 Stresses in laminates\n 7.4.5 Choosing a laminate\n Problems\n 7.5 Strength of wide laminates\n 7.5.1 First-ply failure\n 7.5.2 Strength in bending\n 7.5.3 Edge effects\n Problems\n Further reading\n8 Fluid flow and heat transfer in melt processing\n 8.1 Introduction\n 8.2 Unidirectional isothermal Newtonian flow\n 8.2.1 Simple pressure and drag flows\n 8.2.2 Simplified analysis of flow in metering zone of an extruder\n 8.2.3 Lubrication approximation\n 8.2.4 Flow in tapered channels\n 8.2.5 Simplified melt flow m a two-roll mill\n 8.2.6 Spreading disc flow at constant volumetric flow rate\n Problems\n 8.3 Shear viscosity of polymer melts\n 8.3.1 Measurement of shear viscosity\n (a) Drag flow rheometer\n (b) Pressure flow rheometer\n 8.3.2 Presentation of shear viscosity data\n 8.3.3 True shear viscosity and true shear rate\n 8.3.4 Melt flow index (MFI)\n Problems\n 8.4 Unidirectional power-law flows\n 8.4.1 Pressure flows through channels of constant cross-section\n 8.4.2 Pressure flows through channels of gradually changing cross-section\n (a) Example\n 8.4.3 Drag flow of power-law fluids\n Problems\n 8.5 Mixing and blending of polymer melts\n 8.5.1 Dispersive mixing\n 8.5.2 Distributive mixing\n 8.5.3 Axial mixing\n 8.5.4 Mixing devices\n Problem\n 8.6 Tensile viscosity\n Problems\n 8.7 Elasticity of polymer melts\n 8.7.1 Elasticity phenomena\n 8.7.2 Spring and dashpot model\n 8.7.3 Elasticity\n 8.7.4 Post-extrusion swelling\n Problems\n 8.8 Heat transfer in polymer processing\n 8.8.1 General comments on heat transfer\n 8.8.2 Thermal properties of polymers\n 8.8.3 Steady-state heat transfer in static polymers\n 8.8.4 Non-steady-state heat transfer\n 8.8.5 Combined melt flow and heat transfer\n Problems\n Further reading\n Unidirectional isothermal Newtonian flow\n Shear viscosity of polymer melts\n Unidirectional power-law flows\n Tensile viscosity\n Mixing and blending of polymer melts\n Elasticity of polymer melts\n Heat transfer in polymer processing\n9 Some interactions between processing and properties\n 9.1 Introduction\n 9.2 Thermal effects\n 9.2.1 Residual stress after free shrinkage\n (a) Principles\n (b) Restraints on free shrinking\n 9.2.2 Residual stress due to the injection moulding process\n 9.2.3 Dimensional effects and tolerances\n 9.2.4 Inhomogeneity\n 9.2.5 Crystallization\n Problems\n 9.3 Flow effects\n 9.3.1 Molecular orientation\n 9.3.2 Short-fibre orientation\n 9.3.3 Weld-lines\n 9.3.4 Melt fracture and sharkskin\n Problems\n 9.4 Some combined pressure, flow and thermal effects\n 9.4.1 Injection moulding\n 9.4.2 Biaxial orientation\n 9.4.3 Inhomogeneity\n Problem\n 9.5 Effect of change in processing conditions\n 9.6 Preferred shapes\n Further reading\n10 Product design\n 10.1 Introduction\n 10.2 Specific plastics elements\n 10.2.1 Snap-fittings\n (a) Maximum strain during mounting\n (b) Other designs\n (c) Insertion and disconnection forces\n (d) Pull-out strength\n (e) Tooling aspects\n 10.2.2 Integral hinges\n 10.2.3 Detachable connections\n 10.2.4 Fixed connections\n (a) Adhesive joints\n (b) Welded joints\n Problems\n 10.3 Designing for stiffness\n 10.3.1 Increasing modulus E\n 10.3.2 Adaptation of shape\n 10.3.3 Foamed structures\n 10.3.4 Ribs\n (a) Stiffness of ribs\n (b) Strength of ribs\n (c) Stability of ribs\n (d) Torsional stiffness of ribbed structures\n (e) Ribs in other technologies\n 10.3.5 Stiffness of laminated beams\n (a) Rectangular section laminated beams\n (b) Beams under transverse load through thickness\n (c) Beam under transverse load in the plane\n (d) Parallel axes theorem\n (e) Sections of rotational symmetry\n (f) Beam deflections by shear deformation\n Problems\n 10.4 Prestressed elements\n 10.4.1 Stress relaxation in bolted joints\n (a) Undeformable flanges\n (b) Elastic flanges and packing\n (c) Allowable stress in the bolt\n 10.4.2 Effect of temperature change in laminated structures\n Problems\n 10.5 Tailor-made elements\n 10.5.1 Design for extrusion blow moulding\n (a) Some practical details\n (b) Simple parison sag\n (c) Parison sag during extrusion\n (d) Parison programming\n (e) Wall thickness design\n 10.5.2 Rubber block springs and seals\n (a) Design of bonded block springs loaded in the principal directions\n (b) Stiffness of blocks loaded in non-principal directions\n (c) Other types of rubber springs and coupling units\n (d) Rubber seals\n 10.5.3 Golf club shaft\n (a) Torsional stiffness\n (b) Torsional strength\n (c) Bending stiffness\n (d) Bending strength\n (e) Incorporating the requirements into the design\n (f) Concluding remarks\n 10.5.4 Coupling effects in symmetrical composite laminates\n 10.5.5 Case study of a potato tray\n (a) Introduction\n (b) What must the tray do?\n (c) Design approaches\n (d) Choice of materials\n (e) Concepts for structural design\n (f) Stiffness considerations\n (g) Prototype\n (h) Injection machine and mould\n Problems\n 10.6 Computer-aided engineering with polymers\n 10.6.1 Finite element method\n 10.6.2 Structural mechanics\n 10.6.3 Injection moulding simulations\n 10.6.4 Conclusion\n Further reading\nOutline answers\nIndex




پست ها تصادفی