چو ایران نباشد تن من مباد
EPITAXY OF SEMICONDUCTORS : physics and fabrication of heterostructures.

دانلود کتاب EPITAXY OF SEMICONDUCTORS : physics and fabrication of heterostructures.

51000 تومان موجود

کتاب اپیتاکسی نیمه هادی ها: فیزیک و ساخت ناهمسان ساختارها. نسخه زبان اصلی

دانلود کتاب اپیتاکسی نیمه هادی ها: فیزیک و ساخت ناهمسان ساختارها. بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 8


توضیحاتی در مورد کتاب EPITAXY OF SEMICONDUCTORS : physics and fabrication of heterostructures.

نام کتاب : EPITAXY OF SEMICONDUCTORS : physics and fabrication of heterostructures.
ویرایش : 2
عنوان ترجمه شده به فارسی : اپیتاکسی نیمه هادی ها: فیزیک و ساخت ناهمسان ساختارها.
سری :
نویسندگان :
ناشر : SPRINGER NATURE
سال نشر : 2020
تعداد صفحات : 546
ISBN (شابک) : 9783030438685 , 3030438686
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 18 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Preface to the Second Edition Preface to the First Edition Contents About the Author Abbreviations 1 Introduction 1.1 Epitaxy 1.1.1 Roots of Epitaxy 1.1.2 Epitaxy and Bulk-Crystal Growth 1.2 Issues of Epitaxy 1.2.1 Convention on Use of the Term ``Atom'' 1.2.2 Assembly of Atoms 1.2.3 Tasks for Epitaxial Growth References 2 Structural Properties of Heterostructures 2.1 Basic Crystal Structures 2.1.1 Notation of Planes and Directions 2.1.2 Wafer Orientation 2.1.3 Face-Centered Cubic and Hexagonal Close-Packed Structures 2.1.4 Zincblende and Diamond Structures 2.1.5 Rocksalt and Cesium-Chloride Structures 2.1.6 Wurtzite Structure 2.1.7 Thermal Expansion 2.1.8 Structural Stability Map 2.1.9 Polytypism 2.1.10 Random Alloys and Vegard's Rule 2.1.11 Virtual-Crystal Approximation 2.2 Elastic Properties of Heterostructures 2.2.1 Strain in One and Two Dimensions 2.2.2 Three-Dimensional Strain 2.2.3 Hooke's Law 2.2.4 Poisson's Ratio 2.2.5 Pseudomorphic Heterostructures 2.2.6 Critical Layer Thickness 2.2.7 Approaches to Extend the Critical Thickness 2.2.8 Partially Relaxed Layers and Thermal Mismatch 2.3 Dislocations 2.3.1 Edge and Screw Dislocations 2.3.2 Motion of Dislocations 2.3.3 Dislocation Network 2.3.4 Dislocations in the fcc Structure 2.3.5 Dislocations in Diamond and Zincblende Structures 2.3.6 Dislocation Energy 2.3.7 Dislocations in the hcp and Wurtzite Structures 2.3.8 Antiphase Domains 2.3.9 Mosaic Crystal 2.4 Structural Characterization Using X-Ray Diffraction 2.4.1 Bragg's Law 2.4.2 The Structure Factor 2.4.3 The Reciprocal Lattice 2.4.4 The Ewald Construction 2.4.5 High-Resolution Scans in the Reciprocal Space 2.4.6 Reciprocal-Space Map 2.5 Problems Chapter 2 2.6 General Reading Chapter 2 References 3 Structure of Organic Crystals 3.1 Building Blocks in Organic Crystals 3.1.1 Bonding in Organic Crystals 3.1.2 Small-Molecule Crystals 3.1.3 Polymers 3.2 Substrate-Layer Relation and Defects of Organic Crystals 3.2.1 Substrate-Layer Relation of Organic Crystals 3.2.2 Ordered Pentacene Layers 3.2.3 Defects in Small-Molecule Crystals 3.2.4 Defects in Polymers 3.3 Problems Chapter 3 3.4 General Reading Chapter 3 References 4 Electronic Properties of Heterostructures 4.1 Bulk Properties 4.1.1 Electronic Bands of Zincblende and Wurtzite Crystals 4.1.2 Strain Effects 4.1.3 Spontaneous Polarization and Piezoelectricity 4.1.4 Temperature Dependence of the Bandgap 4.1.5 Bandgap of Alloys 4.2 Band Offsets 4.2.1 Electron-Affinity Rule 4.2.2 Common-Anion Rule 4.2.3 Model of Deep Impurity Levels 4.2.4 Interface-Dipol Theory 4.2.5 Model-Solid Theory 4.2.6 Offsets of Some Isovalent Heterostructures 4.2.7 Band Offset of Heterovalent Interfaces 4.2.8 Band Offsets of Alloys 4.3 Electronic States in Low-Dimensional Structures 4.3.1 Dimensionality of the Electronic Density-of-States 4.3.2 Characteristic Scale for Size Quantization 4.3.3 Quantum Wells 4.3.4 Quantum Wires 4.3.5 Quantum Dots 4.4 Problems Chapter4 4.5 General Reading Chapter4 References 5 Electronic Properties of Organic Semiconductors 5.1 Band Structure of Organic Crystals 5.1.1 Highest Occupied and Lowest Unoccupied Molecular Orbitals 5.1.2 Bands and Bandgaps in Organic Crystals 5.1.3 Excitons in Organic Crystals 5.2 Transport in Organic Semiconductors 5.2.1 Polarons 5.2.2 Mobility of Carriers in Organic Semiconductors 5.3 Interfaces in Organic Semiconductors 5.3.1 Organic-Organic Heterointerface 5.3.2 Organic-Metal Interface 5.4 Problems Chapter 5 5.5 General Reading Chapter 5 References 6 Thermodynamics of Epitaxial Layer-Growth 6.1 Phase Equilibria 6.1.1 Thermodynamic Equilibrium 6.1.2 Gibbs Phase Rule 6.1.3 Gibbs Energy of a Single-Component System 6.1.4 Phases Boundaries in a Single-Component System 6.1.5 Driving Force for Crystallization 6.1.6 Two-Component System 6.2 Crystalline Growth 6.2.1 Homogeneous Three-Dimensional Nucleation 6.2.2 Heterogeneous Three-Dimensional Nucleation 6.2.3 Growth Modes 6.2.4 Equilibrium Surfaces 6.2.5 Two-Dimensional Nucleation 6.2.6 Island Growth and Coalescence 6.2.7 Growth without Nucleation 6.2.8 Ripening Process After Growth Interruption 6.3 Problems Chapter 6 6.4 General Reading Chapter 6 References 7 Atomistic Aspects of Epitaxial Layer-Growth 7.1 Surface Structure 7.1.1 The Kink Site of a Kossel Crystal 7.1.2 Surfaces of a Kossel Crystal 7.1.3 Relaxation and Reconstruction 7.1.4 Electron-Counting Model 7.1.5 Denotation of Surface Reconstructions 7.1.6 Reconstructions of the GaAs(001) Surface 7.1.7 The Silicon (111)(7times7) Reconstruction 7.2 Kinetic Process Steps in Layer Growth 7.2.1 Kinetics in the Terrace-Step-Kink Model 7.2.2 Atomistic Processes in Nucleation and Growth 7.2.3 Adatoms on a Terraced Surface 7.2.4 Growth by Step Advance 7.2.5 The Ehrlich-Schwoebel Barrier 7.2.6 Effect of the Ehrlich-Schwoebel Barrier on Surface Steps 7.2.7 Roughening of Surface Steps 7.2.8 Growth of a Si(111)(7times7) Surface 7.2.9 Growth of a GaAs(001) β2(2times4) Surface 7.3 Self-organized Nanostructures 7.3.1 Stranski-Krastanow Island Growth 7.3.2 Thermodynamics Versus Kinetics in Island Formation 7.3.3 Wire Growth on Non-planar Surfaces 7.4 Problems Chapter7 7.5 General Reading Chapter7 References 8 In Situ Growth Analysis 8.1 Surface and Ambient Probing 8.2 In Situ Ambient Analysis 8.2.1 Quadrupole Mass Spectrometry 8.2.2 Optical Ambient Probing 8.3 Surface-Sensitive Diffraction Techniques 8.3.1 Reflection High-Energy Electron Diffraction (RHEED) 8.3.2 Grazing Incidence X-Ray Diffraction (GIXD) and Reflection 8.4 Optical in Situ Surface Probes 8.4.1 Pyrometry 8.4.2 Deflectometry 8.4.3 Reflectance and Ellipsometry 8.4.4 Reflectance-Difference Spectroscopy 8.5 Problems Chapter 8 8.6 General Reading Chapter 8 References 9 Application of Surfactants 9.1 The Surfactant Effect 9.1.1 Concept of Surfactant-Mediated Growth 9.1.2 Evidence for the Surfactant Effect 9.1.3 Surfactant-Mediated Ge/Si Epitaxy 9.1.4 Surfactant-Mediated Epitaxy of III–V Semiconductors 9.2 Models of Surfactant-Assisted Epitaxy 9.2.1 Thermodynamic Considerations 9.2.2 Kinetic Approach 9.2.3 The Diffusion—De-exchange—Passivation (DDP) Model 9.2.4 Exchange Pathways in Surfactant-Mediated Epitaxy 9.3 Conclusion 9.4 Problems Chapter 9 9.5 General Reading Chapter 9 References 10 Doping, Diffusion, and Contacts 10.1 Doping of Semiconductors 10.1.1 Thermal Equilibrium Carrier-Densities 10.1.2 Solubility of Dopants 10.1.3 Amphoteric Dopants 10.1.4 Compensation by Native Defects 10.1.5 Hydrogen Compensation and Passivation 10.1.6 DX Centers 10.1.7 Fermi-Level Stabilization Model 10.1.8 Delta Doping and Modulation Doping 10.2 Diffusion 10.2.1 Diffusion Equations 10.2.2 Diffusion Mechanisms 10.2.3 Effective Diffusion Coefficients 10.2.4 Disordering of Heterointerfaces 10.3 Metal-Semiconductor Contact 10.3.1 Ideal Schottky Contact 10.3.2 Real Metal-Semiconductor Contact 10.3.3 Practical Ohmic Metal-Semiconductor Contact 10.3.4 Epitaxial Contact Structures 10.4 Problems Chap.6 10.5 General Reading Chap.6 References 11 Methods of Epitaxy 11.1 Liquid-Phase Epitaxy 11.1.1 Growth Systems 11.1.2 Congruent Melting 11.1.3 LPE Principle 11.1.4 LPE Processes 11.2 Metalorganic Vapor-Phase Epitaxy 11.2.1 Metalorganic Precursors 11.2.2 The Growth Process 11.2.3 Mass Transport 11.3 Molecular Beam Epitaxy 11.3.1 MBE System and Vacuum Requirements 11.3.2 Beam Sources 11.3.3 Uniformity of Deposition 11.3.4 Adsorption of Impinging Particles 11.4 Problems Chapter 11 11.5 General Reading Chapter11-1 References 12 Special Growth Techniques 12.1 Selective Area Growth 12.1.1 Principle of Selective Area Growth 12.1.2 Conditions for Selectivity 12.1.3 Selective Area Growth of Faceted Structures 12.1.4 Epitaxial Lateral Overgrowth (ELO) 12.2 Vapor–Liquid–Solid Growth of Nanowires 12.2.1 Outline of the VLS Method 12.2.2 Growth of Si Nanowires 12.2.3 Growth of III–V Nanowires 12.3 Atomic Layer Epitaxy and Related Techniques 12.3.1 Atomic Layer Epitaxy (ALE) 12.3.2 Migration-Enhanced Epitaxy (MEE) 12.3.3 Atomic Layer Deposition (ALD) 12.4 Deposition of Organic Crystals 12.4.1 Methods of Organic Layer Deposition 12.4.2 Epitaxy of Organic Semiconductors 12.5 General Reading Chapter 12 References Appendix Index Fundamental Physical Constants




پست ها تصادفی