Essentials of Econometrics

دانلود کتاب Essentials of Econometrics

46000 تومان موجود

کتاب ملزومات اقتصاد سنجی نسخه زبان اصلی

دانلود کتاب ملزومات اقتصاد سنجی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 5


توضیحاتی در مورد کتاب Essentials of Econometrics

نام کتاب : Essentials of Econometrics
ویرایش : 4
عنوان ترجمه شده به فارسی : ملزومات اقتصاد سنجی
سری :
نویسندگان : ,
ناشر : McGraw-Hill Education
سال نشر : 2009
تعداد صفحات : 576
ISBN (شابک) : 0073375845 , 9780073375847
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 5 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.

توضیحاتی در مورد کتاب :


هدف اصلی ویرایش چهارم Essentials of Econometrics ارائه مقدمه ای کاربرپسند برای نظریه و تکنیک های اقتصادسنجی است. این متن مقدمه ای ساده و سرراست از اقتصاد سنجی برای مبتدیان ارائه می دهد. این کتاب برای کمک به دانش‌آموزان در درک تکنیک‌های اقتصادسنجی از طریق مثال‌های گسترده، توضیحات دقیق و طیف گسترده‌ای از مطالب مسئله طراحی شده است. در هر یک از نسخه‌ها، من سعی کرده‌ام تحولات عمده در این زمینه را به روشی شهودی و آموزنده بدون توسل به جبر ماتریسی، حساب دیفرانسیل و انتگرال، یا آمار فراتر از سطح مقدماتی ترکیب کنم. نسخه چهارم این سنت را ادامه می دهد.

فهرست مطالب :


Tittle Contents 1 The Nature and Scope of Econometrics 1.1 WHAT IS ECONOMETRICS? 1.2 WHY STUDY ECONOMETRICS? 1.3 THE METHODOLOGY OF ECONOMETRICS Creating a Statement of Theory or Hypothesis Collecting Data Specifying the Mathematical Model of Labor Force Participation Specifying the Statistical, or Econometric, Model of Labor Force Participation Estimating the Parameters of the Chosen Econometric Model Checking for Model Adequacy: Model Specification Testing Testing the Hypothesis Derived from the Model Using the Model for Prediction or Forecasting 1.4 THE ROAD AHEAD KEY TERMS AND CONCEPTS QUESTIONS PROBLEMS APPENDIX 1A: ECONOMIC DATA ON THE WORLD WIDE WEB PART I THE LINEAR REGRESSION MODEL 2 Basic Ideas of Linear Regression: The Two-Variable Model 2.1 THE MEANING OF REGRESSION 2.2 THE POPULATION REGRESSION FUNCTION (PRF): A HYPOTHETICAL EXAMPLE 2.3 STATISTICAL OR STOCHASTIC SPECIFICATION OF THE POPULATION REGRESSION FUNCTION 2.4 THE NATURE OF THE STOCHASTIC ERROR TERM 2.5 THE SAMPLE REGRESSION FUNCTION (SRF) 2.6 THE SPECIAL MEANING OF THE TERM “LINEAR” REGRESSION Linearity in the Variables Linearity in the Parameters 2.7 TWO-VARIABLE VERSUS MULTIPLE LINEAR REGRESSION 2.8 ESTIMATION OF PARAMETERS: THE METHOD OF ORDINARY LEAST SQUARES The Method of Ordinary Least Squares 2.9 PUTTING IT ALL TOGETHER Interpretation of the Estimated Math S.A.T. Score Function 2.10 SOME ILLUSTRATIVE EXAMPLES 2.11 SUMMARY KEY TERMS AND CONCEPTS QUESTIONS PROBLEMS OPTIONAL QUESTIONS APPENDIX 2A: DERIVATION OF LEAST-SQUARES ESTIMATES 3 The Two-Variable Model: Hypothesis Testing 3.1 THE CLASSICAL LINEAR REGRESSION MODEL 3.2 VARIANCES AND STANDARD ERRORS OF ORDINARY LEAST SQUARES ESTIMATORS Variances and Standard Errors of the Math S.A.T. Score Example Summary of the Math S.A.T. Score Function 3.3 WHY OLS? THE PROPERTIES OF OLS ESTIMATORS Monte Carlo Experiment 3.4 THE SAMPLING, OR PROBABILITY, DISTRIBUTIONS OF OLS ESTIMATORS 3.5 HYPOTHESIS TESTING Testing H0:B2 = 0 versus H1:B2 Z 0 : The Confidence Interval Approach The Test of Significance Approach to Hypothesis Testing Math S.A.T. Example Continued 3.6 HOW GOOD IS THE FITTED REGRESSION LINE: THE COEFFICIENT OF DETERMINATION, r 2 Formulas to Compute r 2 r 2 for the Math S.A.T. Example The Coefficient of Correlation, r 3.7 REPORTING THE RESULTS OF REGRESSION ANALYSIS 3.8 COMPUTER OUTPUT OF THE MATH S.A.T. SCORE EXAMPLE 3.9 NORMALITY TESTS Histograms of Residuals Normal Probability Plot Jarque-Bera Test 3.10 A CONCLUDING EXAMPLE: RELATIONSHIP BETWEEN WAGES AND PRODUCTIVITY IN THE U.S. BUSINESS SECTOR, 1959–2006 3.11 A WORD ABOUT FORECASTING 3.12 SUMMARY KEY TERMS AND CONCEPTS QUESTIONS PROBLEMS 4 Multiple Regression: Estimation and Hypothesis Testing 4.1 THE THREE-VARIABLE LINEAR REGRESSION MODEL The Meaning of Partial Regression Coefficient 4.2 ASSUMPTIONS OF THE MULTIPLE LINEAR REGRESSION MODEL 4.3 ESTIMATION OF THE PARAMETERS OF MULTIPLE REGRESSION Ordinary Least Squares Estimators Variance and Standard Errors of OLS Estimators Properties of OLS Estimators of Multiple Regression 4.4 GOODNESS OF FIT OF ESTIMATED MULTIPLE REGRESSION: MULTIPLE COEFFICIENT OF DETERMINATION, R2 4.5 ANTIQUE CLOCK AUCTION PRICES REVISITED Interpretation of the Regression Results 4.6 HYPOTHESIS TESTING IN A MULTIPLE REGRESSION: GENERAL COMMENTS 4.7 TESTING HYPOTHESES ABOUT INDIVIDUAL PARTIAL REGRESSION COEFFICIENTS The Test of Significance Approach The Confidence Interval Approach to Hypothesis Testing 4.8 TESTING THE JOINT HYPOTHESIS THAT B2 = B3 = 0 OR R2 = 0 An Important Relationship between F and R2 4.9 TWO-VARIABLE REGRESSION IN THE CONTEXT OF MULTIPLE REGRESSION: INTRODUCTION TO SPECIFICATION BIAS 4.10 COMPARING TWO R2 VALUES: THE ADJUSTED R2 4.11 WHEN TO ADD AN ADDITIONAL EXPLANATORY VARIABLE TO A MODEL 4.12 RESTRICTED LEAST SQUARES 4.13 ILLUSTRATIVE EXAMPLES Discussion of Regression Results 4.14 SUMMARY KEY TERMS AND CONCEPTS QUESTIONS PROBLEMS APPENDIX 4A.1: DERIVATIONS OF OLS ESTIMATORS GIVEN IN EQUATIONS (4.20) TO (4.22) APPENDIX 4A.2: DERIVATION OF EQUATION (4.31) APPENDIX 4A.3: DERIVATION OF EQUATION (4.50) APPENDIX 4A.4: EVIEWS OUTPUT OF THE CLOCK AUCTION PRICE EXAMPLE 5 Functional Forms of Regression Models 5.1 HOW TO MEASURE ELASTICITY: THE LOG-LINEAR MODEL Hypothesis Testing in Log-Linear Models 5.2 COMPARING LINEAR AND LOG-LINEAR REGRESSION MODELS 5.3 MULTIPLE LOG-LINEAR REGRESSION MODELS 5.4 HOW TO MEASURE THE GROWTH RATE: THE SEMILOG MODEL Instantaneous versus Compound Rate of Growth The Linear Trend Model 5.5 THE LIN-LOG MODEL: WHEN THE EXPLANATORY VARIABLE IS LOGARITHMIC 5.6 RECIPROCAL MODELS 5.7 POLYNOMIAL REGRESSION MODELS 5.8 REGRESSION THROUGH THE ORIGIN 5.9 A NOTE ON SCALING AND UNITS OF MEASUREMENT 5.10 REGRESSION ON STANDARDIZED VARIABLES 5.11 SUMMARY OF FUNCTIONAL FORMS 5.12 SUMMARY KEY TERMS AND CONCEPTS QUESTIONS PROBLEMS APPENDIX 5A: LOGARITHMS 6 Dummy Variable Regression Models 6.1 THE NATURE OF DUMMY VARIABLES 6.2 ANCOVA MODELS: REGRESSION ON ONE QUANTITATIVE VARIABLE AND ONE QUALITATIVE VARIABLE WITH TWO CATEGORIES: EXAMPLE 6.1 REVISITED 6.3 REGRESSION ON ONE QUANTITATIVE VARIABLE AND ONE QUALITATIVE VARIABLE WITH MORE THAN TWO CLASSES OR CATEGORIES 6.4 REGRESSION ON ONE QUANTIATIVE EXPLANATORY VARIABLE AND MORE THAN ONE QUALITATIVE VARIABLE Interaction Effects A Generalization 6.5 COMPARING TWO REGESSIONS 6.6 THE USE OF DUMMY VARIABLES IN SEASONAL ANALYSIS 6.7 WHAT HAPPENS IF THE DEPENDENT VARIABLE IS ALSO A DUMMY VARIABLE? THE LINEAR PROBABILITY MODEL (LPM) 6.8 SUMMARY KEY TERMS AND CONCEPTS QUESTIONS PROBLEMS PART II REGRESSION ANALYSIS IN PRACTICE 7 Model Selection: Criteria and Tests 7.1 THE ATTRIBUTES OF A GOOD MODEL 7.2 TYPES OF SPECIFICATION ERRORS 7.3 OMISSON OF RELEVANT VARIABLE BIAS: “UNDERFITTING” A MODEL 7.4 INCLUSION OF IRRELEVANT VARIABLES: “OVERFITTING” A MODEL 7.5 INCORRECT FUNCTIONAL FORM 7.6 ERRORS OF MEASUREMENT Errors of Measurement in the Dependent Variable Errors of Measurement in the Explanatory Variable(s) 7.7 DETECTING SPECIFICATION ERRORS: TESTS OF SPECIFICATION ERRORS Detecting the Presence of Unnecessary Variables Tests for Omitted Variables and Incorrect Functional Forms Choosing between Linear and Log-linear Regression Models: The MWD Test Regression Error Specification Test: RESET 7.8 SUMMARY KEY TERMS AND CONCEPTS QUESTIONS PROBLEMS 8 Multicollinearity: What Happens If Explanatory Variables are Correlated? 8.1 THE NATURE OF MULTICOLLINEARITY: THE CASE OF PERFECT MULTICOLLINEARITY 8.2 THE CASE OF NEAR, OR IMPERFECT, MULTICOLLINEARITY 8.3 THEORETICAL CONSEQUENCES OF MULTICOLLINEARITY 8.4 PRACTICAL CONSEQUENCES OF MULTICOLLINEARITY 8.5 DETECTION OF MULTICOLLINEARITY 8.6 IS MULTICOLLINEARITY NECESSARILY BAD? 8.7 AN EXTENDED EXAMPLE: THE DEMAND FOR CHICKENS IN THE UNITED STATES, 1960 TO 1982 Collinearity Diagnostics for the Demand Function for Chickens (Equation [8.15]) 8.8 WHAT TO DO WITH MULTICOLLINEARITY: REMEDIAL MEASURES Dropping a Variable(s) from the Model Acquiring Additional Data or a New Sample Rethinking the Model Prior Information about Some Parameters Transformation of Variables Other Remedies 8.9 SUMMARY KEY TERMS AND CONCEPTS QUESTIONS PROBLEMS 9 Heteroscedasticity: What Happens If the Error Variance Is Nonconstant? 9.1 THE NATURE OF HETEROSCEDASTICITY 9.2 CONSEQUENCES OF HETEROSCEDASTICITY 9.3 DETECTION OF HETEROSCEDASTICITY: HOW DO WE KNOW WHEN THERE IS A HETEROSCEDASTICITY PROBLEM? Nature of the Problem Graphical Examination of Residuals Park Test Glejser Test White’s General Heteroscedasticity Test Other Tests of Heteroscedasticity 9.4 WHAT TO DO IF HETEROSCEDASTICITY IS OBSERVED: REMEDIAL MEASURES 9.5 WHITE’S HETEROSCEDASTICITY-CORRECTED STANDARD ERRORS AND t STATISTICS 9.6 SOME CONCRETE EXAMPLES OF HETEROSCEDASTICITY 9.7 SUMMARY KEY TERMS AND CONCEPTS QUESTIONS PROBLEMS 10 Autocorrelation: What Happens If Error Terms Are Correlated? 10.1 THE NATURE OF AUTOCORRELATION Inertia Model Specification Error(s) The Cobweb Phenomenon Data Manipulation 10.2 CONSEQUENCES OF AUTOCORRELATION 10.3 DETECTING AUTOCORRELATION The Graphical Method The Durbin-Watson d Test 10.4 REMEDIAL MEASURES 10.5 HOW TO ESTIMATE � � � 1: The First Difference Method � Estimated from Durbin-Watson d Statistic � Estimated from OLS Residuals, et Other Methods of Estimating � 10.6 A LARGE SAMPLE METHOD OF CORRECTING OLS STANDARD ERRORS: THE NEWEY-WEST (NW) METHOD 10.7 SUMMARY KEY TERMS AND CONCEPTS QUESTIONS PROBLEMS APPENDIX 10A: THE RUNS TEST Swed-Eisenhart Critical Runs Test Decision Rule APPENDIX 10B: A GENERAL TEST OF AUTOCORRELATION: THE BREUSCH-GODFREY (BG) TEST PART III ADVANCED TOPICS IN ECONOMETRICS 11 Simultaneous Equation Models 11.1 THE NATURE OF SIMULTANEOUS EQUATION MODELS 11.2 THE SIMULTANEOUS EQUATION BIAS: INCONSISTENCY OF OLS ESTIMATORS 11.3 THE METHOD OF INDIRECT LEAST SQUARES (ILS) 11.4 INDIRECT LEAST SQUARES: AN ILLUSTRATIVE EXAMPLE 11.5 THE IDENTIFICATION PROBLEM: A ROSE BY ANY OTHER NAME MAY NOT BE A ROSE Underidentification Just or Exact Identification Overidentification 11.6 RULES FOR IDENTIFICATION: THE ORDER CONDITION OF IDENTIFICATION 11.7 ESTIMATION OF AN OVERIDENTIFIED EQUATION: THE METHOD OF TWO-STAGE LEAST SQUARES 11.8 2SLS: A NUMERICAL EXAMPLE 11.9 SUMMARY KEY TERMS AND CONCEPTS QUESTIONS PROBLEMS APPENDIX 11A: INCONSISTENCY OF OLS ESTIMATORS 12 Selected Topics in Single Equation Regression Models 12.1 DYNAMIC ECONOMIC MODELS: AUTOREGRESSIVE AND DISTRIBUTED LAG MODELS Reasons for Lag Estimation of Distributed Lag Models The Koyck, Adaptive Expectations, and Stock Adjustment Models Approach to Estimating Distributed Lag Models 12.2 THE PHENOMENON OF SPURIOUS REGRESSION: NONSTATIONARY TIME SERIES 12.3 TESTS OF STATIONARITY 12.4 COINTEGRATED TIME SERIES 12.5 THE RANDOM WALK MODEL 12.6 THE LOGIT MODEL Estimation of the Logit Model 12.7 SUMMARY KEY TERMS AND CONCEPTS QUESTIONS PROBLEMS INTRODUCTION TO APPENDIXES A, B, C, AND D: BASICS OF PROBABILITY AND STATISTICS Appendix A: Review of Statistics: Probability and Probability Distributions A.1 SOME NOTATION The Summation Notation Properties of the Summation Operator A.2 EXPERIMENT, SAMPLE SPACE, SAMPLE POINT, AND EVENTS Experiment Sample Space or Population Sample Point Events Venn Diagrams A.3 RANDOM VARIABLES A.4 PROBABILITY Probability of an Event: The Classical or A Priori Definition Relative Frequency or Empirical Definition of Probability Probability of Random Variables A.5 RANDOM VARIABLES AND THEIR PROBABILITY DISTRIBUTIONS Probability Distribution of a Discrete Random Variable Probability Distribution of a Continuous Random Variable Cumulative Distribution Function (CDF) A.6 MULTIVARIATE PROBABILITY DENSITY FUNCTIONS Marginal Probability Functions Conditional Probability Functions Statistical Independence A.7 SUMMARY AND CONCLUSIONS KEY TERMS AND CONCEPTS REFERENCES QUESTIONS PROBLEMS Appendix B: Characteristics of Probability Distributions B.1 EXPECTED VALUE: A MEASURE OF CENTRAL TENDENCY Properties of Expected Value Expected Value of Multivariate Probability Distributions B.2 VARIANCE: A MEASURE OF DISPERSION Properties of Variance Chebyshev’s Inequality Coefficient of Variation B.3 COVARIANCE Properties of Covariance B.4 CORRELATION COEFFICIENT Properties of Correlation Coefficient Variances of Correlated Variables B.5 CONDITIONAL EXPECTATION Conditional Variance B.6 SKEWNESS AND KURTOSIS B.7 FROM THE POPULATION TO THE SAMPLE Sample Mean Sample Variance Sample Covariance Sample Correlation Coefficient Sample Skewness and Kurtosis B.8 SUMMARY KEY TERMS AND CONCEPTS QUESTIONS PROBLEMS OPTIONAL EXERCISES Appendix C: Some Important Probability Distributions C.1 THE NORMAL DISTRIBUTION Properties of the Normal Distribution The Standard Normal Distribution Random Sampling from a Normal Population – The Sampling or Probability Distribution of the Sample Mean X The Central Limit Theorem (CLT) C.2 THE t DISTRIBUTION Properties of the t Distribution C.3 THE CHI-SQUARE ( x 2) PROBABILITY DISTRIBUTION Properties of the Chi-square Distribution C.4 THE F DISTRIBUTION Properties of the F Distribution C.5 SUMMARY KEY TERMS AND CONCEPTS QUESTIONS PROBLEMS Appendix D: Statistical Inference: Estimation and Hypothesis Testing D.1 THE MEANING OF STATISTICAL INFERENCE D.2 ESTIMATION AND HYPOTHESIS TESTING: TWIN BRANCHES OF STATISTICAL INFERENCE D.3 ESTIMATION OF PARAMETERS D.4 PROPERTIES OF POINT ESTIMATORS Linearity Unbiasedness Minimum Variance Efficiency Best Linear Unbiased Estimator (BLUE) Consistency D.5 STATISTICAL INFERENCE: HYPOTHESIS TESTING The Confidence Interval Approach to Hypothesis Testing Type I and Type II Errors: A Digression The Test of Significance Approach to Hypothesis Testing A Word on Choosing the Level of Significance, �, and the p Value The x 2 and F Tests of Significance D.6 SUMMARY KEY TERMS AND CONCEPTS QUESTIONS PROBLEMS Appendix E: Statistical Tables Appendix F: Computer Output of EViews, MINITAB, Excel, and STATA SELECTED BIBLIOGRAPHY INDEXES Name Index Subject Index

توضیحاتی در مورد کتاب به زبان اصلی :


The primary objective of the fourth edition of Essentials of Econometrics is to provide a user-friendly introduction to econometric theory and techniques. This text provides a simple and straightforward introduction to econometrics for the beginner. The book is designed to help students understand econometric techniques through extensive examples, careful explanations, and a wide variety of problem material. In each of the editions, I have tried to incorporate major developments in the field in an intuitive and informative way without resort to matrix algebra, calculus, or statistics beyond the introductory level. The fourth edition continues that tradition.



پست ها تصادفی