Exergetic, Energetic and Environmental Dimensions

دانلود کتاب Exergetic, Energetic and Environmental Dimensions

40000 تومان موجود

کتاب ابعاد اگزرژتیک، انرژی و محیطی نسخه زبان اصلی

دانلود کتاب ابعاد اگزرژتیک، انرژی و محیطی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد

این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 6


توضیحاتی در مورد کتاب Exergetic, Energetic and Environmental Dimensions

نام کتاب : Exergetic, Energetic and Environmental Dimensions
ویرایش : 1
عنوان ترجمه شده به فارسی : ابعاد اگزرژتیک، انرژی و محیطی
سری :
نویسندگان : , ,
ناشر : Academic Press
سال نشر : 2018
تعداد صفحات : 1082
ISBN (شابک) : 9780128137345
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 24 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Front-Matter_2018_Exergetic--Energetic-and-Environmental-Dimensions.pdf (p.1)
Exergetic, Energetic and Environmental Dimensions
Copyright_2018_Exergetic--Energetic-and-Environmental-Dimensions.pdf (p.2)
Copyright
List-of-Contributors_2018_Exergetic--Energetic-and-Environmental-Dimensions.pdf (p.3-10)
List of Contributors
Preface_2018_Exergetic--Energetic-and-Environmental-Dimensions.pdf (p.11-12)
Preface
Chapter-1-1---Potential-Energy-Solutions-_2018_Exergetic--Energetic-and-Envi.pdf (p.13-47)
1.1 - POTENTIAL ENERGY SOLUTIONS FOR BETTER SUSTAINABILITY
1. INTRODUCTION
2. CRITICAL CHALLENGES
3. POTENTIAL SOLUTIONS
4. HYDROGEN ENERGY
5. RENEWABLE ENERGY
6. CLEAN ENERGY RESEARCH LABORATORY AS A WORLD-LEADING CENTER
7. THERMOCHEMICAL AND HYBRID HYDROGEN PRODUCTION CYCLES
8. PHOTONIC HYDROGEN PRODUCTION
9. AMMONIA
10. SYSTEM INTEGRATION AND MULTIGENERATION
11. COMPARATIVE ASSESSMENTS
11.1 RENEWABLES
11.2 HYDROGEN
11.3 AMMONIA
12. CONCLUSIONS
ABBREVIATIONS
REFERENCES
Chapter-1-2---Net-Zero-Energy-Residential-B_2018_Exergetic--Energetic-and-En.pdf (p.48-62)
1.2 - NET ZERO ENERGY RESIDENTIAL BUILDING ARCHITECTURE IN THE FUTURE
1. INTRODUCTION
2. SOLAR DECATHLON
3. METHODS
4. ENERGY BALANCE SUBCONTEST
4.1 ARCHITECTURAL CHARACTERISTICS
4.2 PASSIVE STRATEGIES
4.3 ACTIVE STRATEGIES
4.4 ENERGY PRODUCTION
4.5 OTHER STRATEGIES
5. CONCLUSIONS
REFERENCES
Chapter-1-3---Achieving-Green-Building-Standards-v_2018_Exergetic--Energetic.pdf (p.63-77)
1.3 - ACHIEVING GREEN BUILDING STANDARDS VIA ENERGY EFFICIENCY RETROFIT: A CASE STUDY OF AN INDUSTRIAL FACILITY
1. INTRODUCTION
2. GREEN BUILDINGS
2.1 GREEN BUILDING REQUIREMENTS
2.1.1 Water Efficiency
2.1.2 Energy Efficiency
2.1.3 Indoor Environmental Quality
2.1.4 Materials and Resources
2.1.5 Green Energy Audit of Buildings
3. CASE STUDY
3.1 CLIMATE CONDITIONS
3.2 THERMOGRAPHIC INSPECTION
3.3 LIGHTING AUDIT
3.4 PROPOSING RETROFIT ACTIONS
3.5 COST-BENEFIT ANALYSIS
4. CONCLUSIONS
ABBREVIATIONS
REFERENCES
Chapter-1-4---A-New-Approach-for-a-Control-Syste_2018_Exergetic--Energetic-a.pdf (p.78-92)
1.4 - A NEW APPROACH FOR A CONTROL SYSTEM OF AN INNOVATIVE BUILDING-INTEGRATED PHOTOBIOREACTOR
1. INTRODUCTION
2. BUILDING-INTEGRATED PHOTOBIOREACTORS
2.1 THERMAL COMFORT
2.2 VISUAL COMFORT
2.3 RENEWABLE ENERGY PRODUCTION
2.4 CARBON SEQUESTRATION POTENTIAL
3. LIMITING FACTORS FOR ALGAE CULTIVATION
3.1 LIGHT PROFILE
3.2 AMOUNT OF GASES
3.3 MIXING
3.4 TEMPERATURE
3.5 PH
3.6 SALINITY
4. CONTROL SYSTEM DESIGN
5. RESULTS
6. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-1-5---Multicriteria-Selection-Factors-for-E_2018_Exergetic--Energeti.pdf (p.93-108)
1.5 - MULTICRITERIA SELECTION FACTORS FOR EVALUATION OF INTELLIGENT BUILDINGS—A NOVEL APPROACH FOR ENERGY MANAGEMENT
1. INTRODUCTION
2. LITERATURE REVIEW
2.1 ENERGY CONSUMPTION
2.2 INTELLIGENT BUILDINGS
3. METHODOLOGY
3.1 PHASE I: IDENTIFY THE DECISION CRITERIA
3.2 PHASE II: ASSESSING THE ACCURACY OF THE FINDINGS OF THE PREVIOUS STEP THROUGH QUESTIONING THE EXPERTS
3.3 PHASE III: CREATE THE MODEL
4. RESULTS AND DISCUSSION
5. CONCLUSIONS
REFERENCES
Chapter-1-6---The-Place-of-Coal-Production-_2018_Exergetic--Energetic-and-En.pdf (p.109-119)
1.6 - THE PLACE OF COAL PRODUCTION AND CONSUMPTION IN TURKEY\'S ECONOMY
1. INTRODUCTION
2. COAL TYPES AND PROPERTIES
3. COAL RESERVES AND PRODUCTION IN THE WORLD AND TURKEY
4. OCCUPATIONAL ACCIDENTS IN COAL MINING
5. COAL PROFIT-LOSS ANALYSIS
6. RESULTS AND DISCUSSION
7. CONCLUSIONS
REFERENCES
Chapter-1-7---Long-term-Energy-Demand-and-Sup_2018_Exergetic--Energetic-and-.pdf (p.120-137)
1.7 - LONG-TERM ENERGY DEMAND AND SUPPLY PROJECTIONS AND EVALUATIONS FOR TURKEY
1. INTRODUCTION
2. ENERGY CONSUMPTION IN TURKEY
2.1 THE STRUCTURE OF THE ENERGY SECTOR IN TURKEY
2.2 THE STRUCTURE OF THE ELECTRICITY SECTOR IN TURKEY
3. METHODOLOGY
4. RESULTS AND DISCUSSION
4.1 ENERGY DEMAND SCENARIOS
4.1.1 Business-as-Usual Scenario
4.1.2 Mitigation Scenario
4.2 ELECTRICITY GENERATION SCENARIOS
4.2.1 Hydro Scenario
4.2.2 Nuclear Scenario
4.2.3 Geo and Wind Scenario
4.2.4 Total Scenario
5. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-1-8---Comparison-of-ANN--Regression-Analysis-_2018_Exergetic--Energe.pdf (p.138-153)
1.8 - COMPARISON OF ANN, REGRESSION ANALYSIS, AND ANFIS MODELS IN ESTIMATION OF GLOBAL SOLAR RADIATION FOR DIFFEREN ...
1. INTRODUCTION
2. MATERIALS AND METHODS
2.1 ARTIFICIAL NEURAL NETWORK
2.2 REGRESSION ANALYSIS
2.3 ADAPTIVE NETWORK-BASED FUZZY INFERENCE SYSTEM
3. RESULTS AND DISCUSSION
4. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-1-9---Production-Planning-Using-Day_2018_Exergetic--Energetic-and-En.pdf (p.154-171)
1.9 - PRODUCTION PLANNING USING DAY-AHEAD PRICES IN A CEMENT PLANT
1. INTRODUCTION
2. SYSTEM DESCRIPTION
2.1 CEMENT INDUSTRY
2.2 THE CEMENT SECTOR
2.3 DAY-AHEAD MARKET
2.4 LINEAR PROGRAMMING AND MIXED INTEGER PROGRAMMING
2.5 THE PROPOSED METHODOLOGY
2.6 THE MIXED INTEGER PROGRAMMING MODEL
3. RESULTS AND DISCUSSION
4. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-1-10---The-Importance-of-Ships-in-the_2018_Exergetic--Energetic-and-.pdf (p.172-183)
1.10 - THE IMPORTANCE OF SHIPS IN THE NEXT-GENERATION ELECTRIC POWER SYSTEMS
1. INTRODUCTION
2. SYSTEMS DESCRIPTION
3. CASE STUDY
4. RESULTS AND DISCUSSION
5. CONCLUSION
NOMENCLATURE
REFERENCES
Chapter-1-11---Ventilation-Strategies-for-the-Preve_2018_Exergetic--Energeti.pdf (p.184-197)
1.11 - VENTILATION STRATEGIES FOR THE PREVENTIVE CONSERVATION OF MANUSCRIPTS IN THE NECIP PAŞA LIBRARY, İZMIR, TURKEY
1. INTRODUCTION
2. NECIP PAŞA LIBRARY
3. DESCRIPTION OF METHOD
3.1 MEASUREMENTS
3.2 BUILDING ENERGY PERFORMANCE MODELING AND CALIBRATION
3.3 ASSESSMENT OF CHEMICAL DEGRADATION RISK
4. RESULTS AND DISCUSSION
4.1 RESULTS OF MEASUREMENTS
4.2 RESULTS OF MODEL CALIBRATION
4.3 CONFIGURATION OF SIMULATION CASES
4.3.1 Case 1: Mechanical Ventilation
4.3.2 Case 2: Natural Ventilation
4.4 DISCUSSION
5. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-1-12---Effect-of-Double-Skin-Fa-ade-on-T_2018_Exergetic--Energetic-a.pdf (p.198-214)
1.12 - EFFECT OF DOUBLE-SKIN FAÇADE ON THERMAL ENERGY LOSSES IN BUILDINGS: A CASE STUDY IN TABRIZ
1. INTRODUCTION
2. DESCRIPTION OF SYSTEMS
2.1 MATHEMATICAL MODELING
2.2 VALIDATION
2.3 COMPUTER SIMULATION
3. RESULTS AND DISCUSSION
4. SUMMARY AND CONCLUSION
NOMENCLATURE
REFERENCES
Chapter-2-1---Energy-and-Exergy-Analyses-of-a-G_2018_Exergetic--Energetic-an.pdf (p.215-233)
2.1 - ENERGY AND EXERGY ANALYSES OF A GEOTHERMAL-BASED INTEGRATED SYSTEM FOR TRIGENERATION
1. INTRODUCTION
2. SYSTEM DESCRIPTION
3. THERMODYNAMIC ANALYSIS
4. RESULTS AND DISCUSSION
4.1 EFFECT OF DISTRICT COOLING ON SYSTEM EFFICIENCIES
4.2 EFFECT OF DISTRICT HEATING ON SYSTEM EFFICIENCIES
4.3 EFFECT OF TURBINE ISENTROPIC EFFICIENCIES ON OVERALL SYSTEM PERFORMANCE
4.4 EFFECT OF GEOTHERMAL FLUID TEMPERATURE ON SYSTEM EFFICIENCIES
4.5 EFFECT OF AMBIENT TEMPERATURE ON SYSTEM EFFICIENCIES
5. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-2---Comparative-Assessment-of-Three-I_2018_Exergetic--Energetic-an.pdf (p.234-253)
2.2 - COMPARATIVE ASSESSMENT OF THREE INTEGRATED TRIGENERATION SYSTEMS FOR DAIRY FARMS
1. INTRODUCTION
2. SYSTEM DESCRIPTION
2.1 BACKGROUND DETAILS
2.2 SYSTEM ENERGY DETAILS
2.3 SPECIFIC SYSTEM DETAILS
3. THERMODYNAMIC ANALYSIS
4. RESULTS AND DISCUSSION
5. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-3---Performance-Assessment-of-a-Biomass_2018_Exergetic--Energetic-.pdf (p.254-278)
2.3 - PERFORMANCE ASSESSMENT OF A BIOMASS-FIRED REGENERATIVE ORC SYSTEM THROUGH ENERGY AND EXERGY ANALYSES
1. INTRODUCTION
1.1 ENERGY RESOURCES OF THE ORGANIC RANKINE CYCLE
1.1.1 Geothermal Applications
1.1.2 Solar Applications
1.1.3 Waste Heat Applications
1.1.4 Biomass Applications
2. SYSTEM DESCRIPTION
3. MATHEMATICAL MODEL
3.1 ENERGY ANALYSIS
3.2 EXERGY ANALYSIS
3.3 PERFORMANCE ASSESSMENT PARAMETERS
4. RESULTS AND DISCUSSION
4.1 VALIDATION
4.2 PARAMETRIC STUDIES
4.2.1 Variation of Turbine Inlet Temperature
4.2.2 Variations in Excess Air Ratio
4.2.3 Variations in Mass Flow Rate of Dry Biomass
4.2.4 Variations in Biomass Fuels
5. CONCLUSIONS
REFERENCES
Chapter-2-4---Thermal-Design-and-Modeling-of-She_2018_Exergetic--Energetic-a.pdf (p.279-305)
2.4 - THERMAL DESIGN AND MODELING OF SHELL AND TUBE HEAT EXCHANGERS COMBINING PTSC AND ORC SYSTEMS
1. INTRODUCTION
2. SYSTEM DESCRIPTION
3. MATHEMATICAL MODELING
3.1 MATHEMATICAL MODELING OF PARABOLIC TROUGH SOLAR COLLECTOR
3.2 MATHEMATICAL MODELING OF SHELL AND TUBE HEAT EXCHANGERS
3.3 EXERGETIC ASSESSMENT OF THE HEAT EXCHANGER
4. RESULTS AND DISCUSSIONS
4.1 RESULTS FOR THE SEGMENTAL BAFFLE CONFIGURATION
4.1.1 Effect of Outer Diameter of the Tube on the Performance of the System
4.1.2 Effect of Baffle Spacing on the Performance of the System
4.2 RESULTS FOR HELICAL BAFFLE CONFIGURATIONS
4.2.1 Effects of Tube Diameter on the Performance of the System
4.2.2 Effect of Tube Length on the Performance of the System
4.2.3 Effect of the Shell-Side Mass Flow Rate on the Performance of the System
4.2.4 Effect of Solar Radiation on the Performance of the System
4.2.5 Results for the Exergetic Performance Assessment
5. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-5---CFD-Analysis-of-a-Solar-Geoth_2018_Exergetic--Energetic-and-En.pdf (p.306-321)
2.5 - CFD ANALYSIS OF A SOLAR-GEOTHERMAL SHELL AND TUBE HEAT EXCHANGER
1. INTRODUCTION
2. MODELING
2.1 MODEL DOMAIN AND INPUT PARAMETERS
2.2 MODEL ASSUMPTIONS AND GOVERNING EQUATIONS
2.3 EXERGETIC AND HEAT EXCHANGER EFFECTIVENESS CALCULATIONS
2.4 INLET AND BOUNDARY CONDITIONS
2.5 MESH GENERATION AND SOLUTION PROCEDURE
3. RESULTS AND DISCUSSIONS
3.1 THE EFFECT OF THE SHELL-SIDE MASS FLOW RATE ON THE STHX\'S VELOCITY AND TEMPERATURE DISTRIBUTIONS
3.2 THE RATE OF HEAT TRANSFER, EXERGETIC EFFICIENCY, AND HEAT EXCHANGER EFFECTIVENESS FOR DIFFERENT SHELL-SIDE MASS FLOW RATES
4. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-6---Numerical-Investigation-of-Fixe_2018_Exergetic--Energetic-and-.pdf (p.322-338)
2.6 - NUMERICAL INVESTIGATION OF FIXED-BED DOWNDRAFT WOODY BIOMASS GASIFICATION
1. INTRODUCTION
1.1 THE STOICHIOMETRIC EQUILIBRIUM MODEL
1.2 NONSTOICHIOMETRIC EQUILIBRIUM MODEL
2. WOOD PELLET EXPERIMENTS
3. NUMERICAL PROCEDURE
4. RESULTS AND DISCUSSION
5. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-7---Passive-Thermal-Management-of-a-P_2018_Exergetic--Energetic-an.pdf (p.339-350)
2.7 - PASSIVE THERMAL MANAGEMENT OF A PHOTOVOLTAIC PANEL: INFLUENCE OF FIN ARRANGEMENTS
1. INTRODUCTION
2. MATERIALS AND METHODS
3. RESULTS AND DISCUSSION
3.1 VALIDATION
3.2 PARAMETRIC RESULTS
4. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-8---Thermal-Performance-of-a-Sola_2018_Exergetic--Energetic-and-En.pdf (p.351-360)
2.8 - THERMAL PERFORMANCE OF A SOLAR ROOM HEATER WITH EVACUATED TUBES
1. INTRODUCTION
2. DESIGN AND INSTALLATION OF THE SOLAR HEATING SYSTEM
3. EXPERIMENTS AND RESULTS
4. TEST ROOM HEAT LOSS CALCULATION AND SYSTEM\'S PERFORMANCE FOR HEATING SEASON
5. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-9---Thermodynamic-Assessment-of-an-Inte_2018_Exergetic--Energetic-.pdf (p.361-379)
2.9 - THERMODYNAMIC ASSESSMENT OF AN INTEGRATED SOLAR COLLECTOR SYSTEM FOR MULTIGENERATION PURPOSES
1. INTRODUCTION
2. SYSTEMS DESCRIPTION
3. THERMODYNAMIC ASSESSMENT
3.1 MASS BALANCE ANALYSIS
3.2 ENERGY BALANCE ANALYSIS
3.2.1 Concentrating Collector
3.2.2 Rankine Cycle
3.2.3 Double-Effect Absorption Cooling Subsystem
3.2.4 Proton-Exchange Membrane Electrolyzer
3.3 EXERGY BALANCE ANALYSIS
3.4 ENERGY AND EXERGY EFFICIENCIES OF THE INTEGRATED SYSTEM
4. RESULTS AND DISCUSSION
5. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-10---Energy--Exergy-and-Exergoecono_2018_Exergetic--Energetic-and-.pdf (p.380-399)
2.10 - ENERGY, EXERGY AND EXERGOECONOMIC ANALYSIS OF A SOLAR PHOTOVOLTAIC MODULE
1. INTRODUCTION
2. SYSTEM DESCRIPTION
3. ANALYSES
3.1 ENERGY ANALYSIS
3.2 EXERGY ANALYSIS
3.3 EXERGOECONOMIC ANALYSIS
4. RESULTS AND DISCUSSION
4.1 ENERGY AND EXERGY ANALYSIS
4.2 EXERGOECONOMIC ANALYSIS
5. CONCLUSION
NOMENCLATURE
REFERENCES
Chapter-2-11---Exergetic-and-Energetic-Performanc_2018_Exergetic--Energetic-.pdf (p.400-417)
2.11 - EXERGETIC AND ENERGETIC PERFORMANCE EVALUATION OF A FLAT PLATE SOLAR COLLECTOR IN DYNAMIC BEHAVIOR
1. INTRODUCTION
2. MODELING
2.1 MODELING OF SOLAR COLLECTOR
2.1.1 Energy Analysis
2.1.1.1 Heat Balance for the Transparent Cover
2.1.1.2 Heat Balance for the Air Gap
2.1.1.3 Heat Balance for the Absorber
2.1.1.4 Heat Balance for the Transfer Fluid
2.1.2 Exergy Analysis
2.2 MODELING OF SOLAR RADIATION
3. NUMERICAL CALCULATIONS
4. RESULTS AND DISCUSSION
5. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-12---Performance-Assessment-of-Variou_2018_Exergetic--Energetic-an.pdf (p.418-430)
2.12 - PERFORMANCE ASSESSMENT OF VARIOUS GREENHOUSE HEATING SYSTEMS; A CASE STUDY IN ANTALYA
1. INTRODUCTION
2. SYSTEM DESCRIPTION
3. ANALYSIS
4. RESULTS AND DISCUSSION
5. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-13---Energy--Exergy--and-Exergoenvironmental-_2018_Exergetic--Ener.pdf (p.431-451)
2.13 - ENERGY, EXERGY, AND EXERGOENVIRONMENTAL ASSESSMENTS OF SOLAR-ASSISTED ABSORPTION COOLING SYSTEMS AND CONVENT ...
1. INTRODUCTION
2. DESCRIPTION OF THE SYSTEM
3. ENERGETIC AND EXERGETIC ANALYSES
3.1 HELIOSTAT SOLAR FIELD SYSTEM
3.1.1 Rankin Cycle
3.1.1.1 Conventional System
3.1.2 Absorption Systems
4. RESULTS AND DISCUSSIONS
4.1 EFFECTS OF EVAPORATOR TEMPERATURE THE ENERGETIC AND EXERGETIC COEFFICIENTS OF PERFORMANCE
4.2 EFFECTS OF EVAPORATOR TEMPERATURE ON EXERGOENVIRONMENTAL IMPACT FACTORS
4.3 EFFECTS OF EVAPORATOR TEMPERATURE ON EXERGOENVIRONMENTAL IMPACT COEFFICIENTS
4.4 EFFECTS OF EVAPORATOR TEMPERATURE ON THE EXERGOENVIRONMENTAL IMPACT INDEXES
4.5 EFFECTS OF EVAPORATOR TEMPERATURE ON IMPROVING EXERGOENVIRONMENTAL IMPACT
4.6 EFFECTS OF EVAPORATOR TEMPERATURE ON EXERGETIC STABILITIES
4.7 EFFECTS OF EVAPORATOR TEMPERATURE ON THE EXERGETIC SUSTAINABILITY INDEXES
4.8 EFFECTS OF AMBIENT TEMPERATURE ON ENERGETIC AND EXERGETIC COEFFICIENTS OF PERFORMANCE
4.9 EFFECTS OF VARIATION IN AMBIENT TEMPERATURE ON EXERGY DESTRUCTION RATES
5. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-14---Comparative-Study-of-Two-Solar-Cascad_2018_Exergetic--Energet.pdf (p.452-469)
2.14 - COMPARATIVE STUDY OF TWO SOLAR CASCADE ABSORPTION-COMPRESSION REFRIGERATION SYSTEMS BASED ON ENERGY AND EXER ...
1. INTRODUCTION
2. SYSTEM DESCRIPTION
3. MODEL SIMULATION
3.1 THE FLAT-PLATE COLLECTOR SIMULATION
3.2 THE THERMAL STORAGE TANK SIMULATION
3.3 THE EJECTOR SIMULATION
3.4 EXERGY ANALYSIS
4. THERMODYNAMIC PERFORMANCE
5. RESULTS AND DISCUSSION
6. PARAMETRIC STUDY
6.1 NANOPARTICLES VOLUME FRACTION INFLUENCE
6.2 COLLECTOR TILT ANGLE INFLUENCE
6.3 COLLECTOR AREA INFLUENCE
6.4 LOW PRESSURE INFLUENCE
7. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-15---Comparative-Study-of-Active-and-Pa_2018_Exergetic--Energetic-.pdf (p.470-500)
2.15 - COMPARATIVE STUDY OF ACTIVE AND PASSIVE COOLING TECHNIQUES FOR CONCENTRATED PHOTOVOLTAIC SYSTEMS
1. INTRODUCTION
2. PHYSICAL MODEL
3. MATHEMATICAL MODEL
3.1 PHOTOVOLTAIC MODULE LAYERS
3.2 MICROCHANNEL HEAT SINK DOMAIN
3.3 PHASE CHANGE MATERIAL HEAT SINK DOMAIN
3.4 BOUNDARY CONDITIONS
3.5 SOLUTION METHODS AND CONVERGENCE CRITERIA
3.6 NUMERICAL RESULTS VALIDATION
3.6.1 Uncooled Concentrated Photovoltaic System Validation
3.6.2 Microchannel Heat Sink Validation
3.6.3 Phase Change Material Heat Sink Validation
4. RESULTS AND DISCUSSION
4.1 ACTIVE COOLING TECHNIQUE USING MICROCHANNEL HEAT SINK
4.1.1 Effect of Manifold Pitch
4.1.2 Average Solar Cell Temperature Comparison
4.1.3 Local Solar Cell Temperature Comparison
4.1.4 Net Gained Electrical Power Comparison
4.2 PASSIVE COOLING TECHNIQUE USING PHASE CHANGE MATERIAL
4.2.1 Thermal Performance of the Concentrated Photovoltaic–Phase Change Material System Without Fins
4.2.2 Thermal Performance Comparison for Concentrated Photovoltaic–Phase Change Material Systems With a Different Number of Fins
4.3 COMPARISON BETWEEN THE PROPOSED ACTIVE AND PASSIVE COOLING TECHNIQUES
5. CONCLUSION
NOMENCLATURE
REFERENCES
2.15 . APPENDIX A
AUXILIARY EQUATIONS USED IN THE CURRENT MODEL
Chapter-2-16---Optimization-of-Slope-Angles-o_2018_Exergetic--Energetic-and-.pdf (p.501-515)
2.16 - OPTIMIZATION OF SLOPE ANGLES OF PHOTOVOLTAIC ARRAYS FOR DIFFERENT SEASONS
1. INTRODUCTION
2. MATHEMATICAL MODEL
2.1 PV ARRAY
2.2 THE LATITUDE AND LONGITUDE OF ANY POINT ON EARTH
2.3 CALCULATION OF SOLAR ANGLES
3. RESULTS AND DISCUSSION
3.1 GEOGRAPHICAL LOCATION AND INSOLATION LEVEL
3.2 APPLICATIONS OF OPTIMAL SLOPE ANGLES FOR DIFFERENT SEASONS
4. CONCLUSION
NOMENCLATURE
REFERENCES
Chapter-2-17---Design--Energy-and-Exergy-An_2018_Exergetic--Energetic-and-En.pdf (p.516-525)
2.17 - DESIGN, ENERGY AND EXERGY ANALYSES OF LINEAR FRESNEL REFLECTOR
1. INTRODUCTION
2. SYSTEM DESCRIPTION
2.1 DESIGN PARAMETERS
2.2 ENERGY AND EXERGY ANALYSES
3. RESULTS AND DISCUSSION
4. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-18---Integration-of-Reflectors-to-Imp_2018_Exergetic--Energetic-an.pdf (p.526-542)
2.18 - INTEGRATION OF REFLECTORS TO IMPROVE ENERGY PRODUCTION OF HYBRID PVT COLLECTORS
1. INTRODUCTION
2. SYSTEM DESCRIPTION
3. EXPERIMENTAL APPARATUS AND PROCEDURE
4. RESULTS AND DISCUSSION
5. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-19---Thermodynamic-and-Thermoeconom_2018_Exergetic--Energetic-and-.pdf (p.543-559)
2.19 - THERMODYNAMIC AND THERMOECONOMIC COMPARISONS OF TWO TRIGENERATION SYSTEMS
1. INTRODUCTION
2. SYSTEM DESCRIPTION
3. ENERGY ANALYSIS
4. EXERGY ANALYSIS
5. THERMOECONOMIC ANALYSIS
5.1 THERMOECONOMIC EVALUATION
5.1.1 Average Cost of Fuel
5.1.2 Average Cost of Product
5.1.3 Cost Rate of Exergy Destruction
5.1.4 Cost Rate of Exergy Loss
5.1.5 Relative Cost Difference
5.1.6 Thermoeconomic Factor
6. RESULTS AND DISCUSSION
7. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-20---Comparative-Evaluation-of-Possibl_2018_Exergetic--Energetic-a.pdf (p.560-573)
2.20 - COMPARATIVE EVALUATION OF POSSIBLE DESALINATION OPTIONS WITH VARIOUS NUCLEAR POWER PLANTS
1. INTRODUCTION
2. DESALINATION METHODS
3. COST ASSESSMENT
4. SYSTEM DESCRIPTION
5. RESULTS AND DISCUSSION
6. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-21---Comparative-Evaluation-of-Possibl_2018_Exergetic--Energetic-a.pdf (p.574-587)
2.21 - COMPARATIVE EVALUATION OF POSSIBLE DESALINATION OPTIONS FOR AKKUYU NUCLEAR POWER PLANT
1. INTRODUCTION
2. SYSTEM DESCRIPTION
2.1 DESALINATION METHODS
2.1.1 Multiple Effect Distillation
2.1.2 Multistage Flash
2.1.3 Reverse Osmosis
2.2 DEEP SOFTWARE
2.3 AKKUYU NUCLEAR POWER PLANT
3. ASSUMPTIONS AND METHOD OF THE STUDY
4. ANALYSIS OF THE STUDY
5. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-22---Determination-of-Flow-Character_2018_Exergetic--Energetic-and.pdf (p.588-602)
2.22 - DETERMINATION OF FLOW CHARACTERISTICS OF MULTIPLE SLOT JET IMPINGEMENT COOLING
1. INTRODUCTION
1.1 A SINGLE CONFINED SLOT JET
1.2 ARRAY OF SLOT JETS
2. MATERIALS AND METHOD
2.1 DEFINITION OF THE PROBLEM
2.2 GOVERNING EQUATION AND SOLUTION METHOD
2.3 BOUNDARY CONDITIONS AND MESH INDEPENDENCY
3. RESULTS AND DISCUSSIONS
3.1 VALIDATION OF METHODOLOGY
3.2 PARAMETRIC RESULTS
4. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-23---A-Numerical-Study-on-Phase-C_2018_Exergetic--Energetic-and-En.pdf (p.603-615)
2.23 - A NUMERICAL STUDY ON PHASE CHANGE INSIDE A SPHERICAL CAPSULE
1. INTRODUCTION
2. MATERIALS AND METHODS
2.1 CHARACTERIZATION OF THE PHASE-CHANGE MATERIAL
2.2 DEFINITION OF THE PROBLEM
2.3 SOLUTION METHOD
2.4 VALIDATION OF THE MODEL
3. RESULTS AND DISCUSSION
3.1 EFFECT OF FREE STREAM TEMPERATURE
3.2 EFFECT OF HEAT TRANSFER COEFFICIENT
4. CONCLUSIONS
NOMENCLATURE
ACKNOWLEDGMENTS
REFERENCES
Chapter-2-24---Energy-and-Exergy-Analyses-o_2018_Exergetic--Energetic-and-En.pdf (p.616-628)
2.24 - ENERGY AND EXERGY ANALYSES OF NITROGEN LIQUEFACTION PROCESS
1. INTRODUCTION
2. SYSTEM DESCRIPTION
3. ENERGY AND EXERGY ANALYSES
4. RESULTS AND DISCUSSION
5. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-25---Thermodynamic-Performance-Anal_2018_Exergetic--Energetic-and-.pdf (p.629-643)
2.25 - THERMODYNAMIC PERFORMANCE ANALYSIS OF A RAW MILL SYSTEM IN A CEMENT PLANT
1. INTRODUCTION
2. SYSTEM DESCRIPTION
3. THERMODYNAMIC ASSESSMENT
3.1 MASS BALANCE
3.2 ENERGY BALANCE
3.3 EXERGY BALANCE
3.4 THERMODYNAMIC ANALYSIS OF SYSTEM COMPONENTS
3.4.1 Raw Mill
3.4.2 Filter Ventilation
3.4.3 Filter
3.4.4 Cooling Tower
3.4.5 Abgas Ventilation
3.4.6 Farine Silo
3.4.7 Airlift Compressor
3.4.8 Cyclone
3.5 ENERGY EFFICIENCY
3.6 EXERGY EFFICIENCY
4. RESULTS AND DISCUSSION
5. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-26---Experimental-and-Numerical-Invest_2018_Exergetic--Energetic-a.pdf (p.644-663)
2.26 - EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF CONDENSATION HEAT TRANSFER IN MULTIPORT TUBES
1. INTRODUCTION
2. EXPERIMENTAL FACILITY
2.1 EXPERIMENTAL PROGRAM
2.2 TEST FACILITY
2.3 DATA ACQUISITION AND REDUCTION
3. RESULTS AND DISCUSSION
3.1 SUBCOOLED LIQUID FLOW PRESSURE DROP
3.2 SUBCOOLED LIQUID HEAT TRANSFER
3.3 TWO-PHASE FLOW PRESSURE DROP
3.4 CONDENSATION HEAT TRANSFER
4. NUMERICAL ANALYSIS
4.1 NUMERICAL MODELING
4.2 SOFTWARE USE
4.3 SOFTWARE RESULTS
5. ARTIFICIAL NEURAL NETWORK ANALYSIS
6. CONCLUSION
NOMENCLATURE
REFERENCES
Chapter-2-27---Heat-and-Fluid-Flow-Analyses-_2018_Exergetic--Energetic-and-E.pdf (p.664-680)
2.27 - HEAT AND FLUID FLOW ANALYSES OF AN IMPINGING JET ON A CUBIC BODY
1. INTRODUCTION
2. MODELING PROCEDURE
3. RESULTS AND DISCUSSION
4. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-2-28---Gas-Diffusion-Layers-for-PEM-F_2018_Exergetic--Energetic-and-.pdf (p.681-713)
2.28 - GAS DIFFUSION LAYERS FOR PEM FUEL CELLS: EX- AND IN-SITU CHARACTERIZATION
1. INTRODUCTION
2. CHARACTERISTICS OF GAS DIFFUSION LAYER
2.1 POROSITY AND PORE SIZE DISTRIBUTION
2.2 ELECTRICAL CONDUCTIVITY
2.3 THERMAL CONDUCTIVITY
2.4 GAS PERMEABILITY
2.5 WETTABILITY
3. EX-SITU CHARACTERIZATION OF GAS DIFFUSION LAYER
3.1 POROSITY AND PORE SIZE DISTRIBUTION
3.1.1 Mercury Intrusion Porosimetry
3.1.2 Method of Standard Porosimetry
3.1.3 Capillary Flow Porometry
3.2 ELECTRICAL CONDUCTIVITY
3.2.1 Through-Plane Electrical Conductivity
3.2.2 In-Plane Electrical Conductivity
3.3 THERMAL CONDUCTIVITY
3.3.1 Through-Plane Thermal Conductivity
3.3.2 In-Plane Thermal Conductivity
3.3.2.1 Conventional In-Plane Thermal Conductivity Measurement
3.3.2.2 Parallel Thermal Conductance Technique
3.4 GAS PERMEABILITY
3.4.1 Through-Plane Gas Permeability
3.4.2 In-Plane Gas Permeability
3.5 WETTABILITY
3.5.1 Sessile Drop Technique
3.5.2 Wilhelmy Plate Technique
3.6 CLOSURE
4. IN-SITU CHARACTERIZATION OF GAS DIFFUSION LAYERS (ELECTROCHEMICAL PERFORMANCE ASSESSMENT)
4.1 EFFECT OF TYPE AND LOADING OF CARBON BLACK POWDER
4.2 EFFECT OF HYDROPHOBIC AND HYDROPHILIC TREATMENT
4.3 EFFECT OF MICROSTRUCTURE MODIFICATION
4.4 CLOSURE
5. SUMMARY
ACKNOWLEDGMENTS
REFERENCES
Chapter-3-1---Expert-Opinions-on-Natural-Gas-Ve_2018_Exergetic--Energetic-an.pdf (p.714-733)
3.1 - EXPERT OPINIONS ON NATURAL GAS VEHICLES RESEARCH NEEDS FOR ENERGY POLICY DEVELOPMENT
1. INTRODUCTION
2. METHODOLOGY
3. EVALUATION RESULTS
3.1 GENERAL QUESTIONS
3.2 TECHNICAL QUESTIONS
3.2.1 Areas of Research Opportunity
3.2.2 NGV Mileage
3.2.3 NGV Fueling Code Enforcement
3.2.4 NG Storage Technologies
3.2.5 Use of Renewable Gas in NGVs
4. DISCUSSION
5. CONCLUSIONS AND IMPLICATIONS
ACKNOWLEDGMENTS
REFERENCES
Chapter-3-2---An-Experimental-Study-on-Adsorption-C_2018_Exergetic--Energeti.pdf (p.734-744)
3.2 - AN EXPERIMENTAL STUDY ON ADSORPTION CHARACTERISTICS OF R134A AND R404A ONTO GRANULAR AND PELLET-TYPE ACTIVATE ...
1. INTRODUCTION
2. EXPERIMENTAL APPARATUS AND PROCEDURE
3. MATHEMATICAL APPROACH
4. RESULTS AND DISCUSSION
5. CONCLUSIONS
NOMENCLATURE
ACKNOWLEDGMENTS
REFERENCES
Chapter-3-3---MHD-Natural-Convection-and-Entropy-G_2018_Exergetic--Energetic.pdf (p.745-760)
3.3 - MHD NATURAL CONVECTION AND ENTROPY GENERATION IN A NANOFLUID-FILLED CAVITY WITH A CONDUCTIVE PARTITION
1. INTRODUCTION
2. MODELING
2.1 NANOFLUID EFFECTIVE THERMOPHYSICAL PROPERTIES
2.2 BOUNDARY CONDITIONS AND SOLUTION METHOD
3. RESULTS AND DISCUSSION
4. CONCLUSIONS
NOMENCLATURE
ACKNOWLEDGMENTS
REFERENCES
Chapter-3-4---Fabrication-and-Investigation-of-Si_2018_Exergetic--Energetic-.pdf (p.761-773)
3.4 - FABRICATION AND INVESTIGATION OF SILVER WATER NANOFLUIDS FOR LONG-TERM HEAT TRANSFER APPLICATION
1. INTRODUCTION
2. EXPERIMENTAL APPARATUS AND PROCEDURE
2.1 NANOFLUID FABRICATION
2.2 CHARACTERIZATION
2.3 EXPERIMENTAL SETUP
3. RESULTS AND DISCUSSION
3.1 ULTRAVIOLET-VISIBLE SPECTROSCOPY
3.2 THERMAL CONDUCTIVITY MEASUREMENT
3.3 ZETA POTENTIAL MEASUREMENT
3.4 SCANNING ELECTRON MICROSCOPY
3.5 HEAT PIPE PERFORMANCE
4. CONCLUSIONS
LIST OF SYMBOLS
ACKNOWLEDGMENTS
REFERENCES
Chapter-3-5---Microstructure-and-Oxidation-Behav_2018_Exergetic--Energetic-a.pdf (p.774-795)
3.5 - MICROSTRUCTURE AND OXIDATION BEHAVIOR OF ATMOSPHERIC PLASMA-SPRAYED THERMAL BARRIER COATINGS
1. INTRODUCTION
2. THERMAL BARRIER COATINGS
2.1 MATERIALS
2.1.1 Yttria-Stabilized Zirconia
2.1.2 Lanthanum Zirconate
2.1.3 Alumina (Al2O3)
2.1.4 Cerium Oxide
2.1.5 Mullite
2.2 STRUCTURE OF THERMAL BARRIER COATINGS
2.2.1 Ceramic Top Coat
2.2.2 Bond Coat
2.2.3 Substrate Superalloys
3. MANUFACTURING PROCESSES OF THERMAL BARRIER COATING
3.1 ELECTRON BEAM PHYSICAL VAPOR DEPOSITION
3.2 ATMOSPHERIC PLASMA SPRAY
3.3 HIGH-VELOCITY OXYGEN FUEL
4. FAILURE MECHANISMS AND PRECAUTIONS OF THERMAL BARRIER COATINGS
5. EXPERIMENTAL STUDIES: OXIDATION
6. CONCLUDING REMARKS
REFERENCES
Chapter-3-6---Research-on-the-Pyrolysis-Charact_2018_Exergetic--Energetic-an.pdf (p.796-809)
3.6 - RESEARCH ON THE PYROLYSIS CHARACTERISTICS OF TOMATO WASTE WITH FE–AL2O3 CATALYST
1. INTRODUCTION
2. EXPERIMENTAL FACILITY
2.1 BIOMASS FEEDSTOCK
2.2 PREPARATION AND CHARACTERIZATION OF CATALYTIC MATERIAL
2.3 PYROLYSIS EXPERIMENTS
2.4 CHARACTERIZATION OF BIO-OIL
3. RESULTS AND DISCUSSION
3.1 CATALYST CHARACTERIZATION
3.2 CATALYTIC PYROLYSIS EXPERIMENTS AND BIO-OIL CHARACTERIZATION
4. CONCLUSIONS
ACKNOWLEDGMENT
REFERENCES
Chapter-3-7---Regression-Models-for-Predicting-Some_2018_Exergetic--Energeti.pdf (p.810-831)
3.7 - REGRESSION MODELS FOR PREDICTING SOME IMPORTANT FUEL PROPERTIES OF CORN AND HAZELNUT OIL BIODIESEL–DIESEL FUE ...
1. INTRODUCTION
2. EXPERIMENTAL APPARATUS AND PROCEDURE
2.1 BIODIESEL PRODUCTION
2.2 MEASUREMENTS
3. RESULTS AND DISCUSSION
3.1 VISCOSITY VARIATIONS
3.1.1 Effect of Biodiesel Fraction
3.1.2 Effect of Temperature
3.2 FLASH POINT VARIATION
3.3 HIGHER HEATING VALUE VARIATION
4. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-3-8---Biodiesel-Synthesis-by-Using_2018_Exergetic--Energetic-and-Env.pdf (p.832-840)
3.8 - BIODIESEL SYNTHESIS BY USING THE SMART CATALYTIC MEMBRANE
1. INTRODUCTION
2. EXPERIMENTAL
2.1 MATERIALS
2.2 CATALYTIC MEMBRANE SYNTHESIS AND CHARACTERIZATION
2.3 CATALYTIC PERFORMANCE OF CATALYTIC BLEND MEMBRANES
3. RESULTS AND DISCUSSIONS
3.1 CATALYTIC MEMBRANE CHARACTERIZATION
3.1.1 Fourier Transform Infrared Spectroscopy
3.1.2 Thermogravimetric Analysis
3.2 SYNTHESIS OF BIODIESEL
3.2.1 Effect of Reaction Time
3.2.2 Effect of Methanol–Oleic Acid Molar Ratio
3.2.3 Effect of Catalyst Concentration
3.2.4 Effect of Reaction Temperature
4. CONCLUSIONS
NOMENCLATURE
ACKNOWLEDGMENTS
REFERENCES
Chapter-3-9---Waste-to-Energy-With-a-Combine-Mem_2018_Exergetic--Energetic-a.pdf (p.841-851)
3.9 - WASTE TO ENERGY WITH A COMBINE MEMBRANE TECHNOLOGY: BIOBUTANOL PRODUCTION AND PURIFICATION
1. INTRODUCTION
2. EXPERIMENTAL
2.1 MATERIALS
2.2 MEMBRANE PREPARATION
2.3 MEMBRANE CHARACTERIZATION
2.4 PERVAPORATION EXPERIMENTS
3. RESULTS AND DISCUSSION
3.1 MEMBRANE CHARACTERIZATION RESULTS
3.2 HYDROPHOBIC PERVAPORATION RESULTS
3.3 HYDROPHILIC PERVAPORATION RESULTS
3.4 COMPARISON WITH LITERATURE DATA
4. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-3-10---Research-on-Reaction-Parameters_2018_Exergetic--Energetic-and.pdf (p.852-873)
3.10 - RESEARCH ON REACTION PARAMETERS ABOUT HAZELNUT OIL METHYL ESTER PRODUCTION
1. INTRODUCTION
2. EXPERIMENTAL APPARATUS AND PROCEDURE
2.1 MATERIALS
2.2 REACTION PARAMETERS AND BIODIESEL PRODUCTION PROCEDURE
2.3 DENSITY MEASUREMENT PROCEDURE
2.4 DYNAMIC VISCOSITY MEASUREMENT PROCEDURE
2.5 UNCERTAINTY ANALYSIS
3. RESULTS AND DISCUSSIONS
3.1 IMPACT OF CATALYZER CONCENTRATION
3.2 IMPACT OF REACTION TEMPERATURE
3.3 IMPACT OF REACTION TIME
3.4 IMPACT OF ALCOHOL–OIL MOLAR RATIO
3.5 FATTY ACID METHYL ESTER COMPOSITION AND SOME FUEL PROPERTIES OF FINAL BIODIESEL
4. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-3-11---Evaluation-of-Bio-Oils-Produce_2018_Exergetic--Energetic-and-.pdf (p.874-888)
3.11 - EVALUATION OF BIO-OILS PRODUCED FROM POMEGRANATE PULP CATALYTIC PYROLYSIS
1. INTRODUCTION
2. EXPERIMENT
2.1 MATERIALS
2.2 PYROLYSIS
2.3 STRUCTURAL ANALYSES
3. RESULTS AND DISCUSSION
3.1 EFFECT OF CATALYSIS ON PRODUCT YIELDS
3.2 BIO-OIL CHARACTERIZATION
4. CONCLUSIONS
REFERENCES
Chapter-4-1---Comparative-Life-Cycle-Environmenta_2018_Exergetic--Energetic-.pdf (p.889-910)
4.1 - COMPARATIVE LIFE CYCLE ENVIRONMENTAL IMPACT ASSESSMENT OF NATURAL GAS AND CONVENTIONAL VEHICLES
1. INTRODUCTION
2. BACKGROUND
3. LIFE CYCLE ASSESSMENT: APPROACH AND METHODOLOGY
4. SYSTEM DESCRIPTION AND ANALYSIS
4.1 PASSENGER CARS
4.2 HEAVY-DUTY VEHICLES
4.2.1 Class 8 Trucks
4.2.2 Transit Buses
5. RESULTS AND DISCUSSION
5.1 PASSENGER CARS
5.2 HEAVY-DUTY VEHICLES
5.2.1 Class 8 Trucks
5.2.2 Transit Buses
6. CONCLUSIONS
NOMENCLATURE
ACKNOWLEDGMENTS
REFERENCES
Chapter-4-2---Life-Cycle-Assessment-of-A_2018_Exergetic--Energetic-and-Envir.pdf (p.911-935)
4.2 - LIFE CYCLE ASSESSMENT OF AMMONIA PRODUCTION METHODS
1. INTRODUCTION
2. LIFE CYCLE ASSESSMENT
2.1 GOAL AND SCOPE DEFINITION
2.2 LIFE CYCLE INVENTORY ANALYSIS
2.3 LIFE CYCLE IMPACT ASSESSMENT
2.4 INTERPRETATION OF RESULTS AND IMPROVEMENT
2.5 ASSESSMENT METHODS
2.5.1 CML 2001 Method
2.5.1.1 Depletion of Abiotic Resources
2.5.1.2 Human Toxicity
2.5.1.3 Fresh Water Aquatic Eco-toxicity
2.5.1.4 Acidification Potential
2.5.1.5 Global Warming
2.5.1.6 Eutrophication
2.5.2 Eco-indicator 99 Method
2.5.2.1 Human Health
2.5.2.2 Ecosystem Quality
2.5.2.3 Resources
3. PRODUCTION METHODS
3.1 AMMONIA PRODUCTION
3.2 HYDROGEN PRODUCTION
3.3 NITROGEN PRODUCTION
4. LIFE CYCLE ASSESSMENT: METHODOLOGY
4.1 ASSUMPTIONS AND KEY INPUTS
4.2 ROUTES OF AMMONIA PRODUCTION SELECTED FOR THE STUDY
4.3 CASE STUDIES
5. RESULTS AND DISCUSSION
6. CONCLUSIONS
REFERENCES
Chapter-4-3---Mass-Transfer-Effects-in-SCR-Re_2018_Exergetic--Energetic-and-.pdf (p.936-954)
4.3 - MASS TRANSFER EFFECTS IN SCR REACTOR FOR NOX ABATEMENT IN DIESEL ENGINES
1. INTRODUCTION
2. EXPERIMENTAL
2.1 MONOLITH REACTOR EXPERIMENTS
3. MATHEMATICAL MODEL
3.1 EXTERNAL (INTERPHASE) MASS TRANSFER
3.2 INTERNAL MASS TRANSFER
3.3 DETERMINATION OF APPARENT AND INTRINSIC REACTION RATE CONSTANTS
3.4 MASS TRANSFER CORRELATIONS FOR MONOLITH REACTORS
4. RESULTS AND DISCUSSION
4.1 STANDARD SELECTIVE CATALYTIC REDUCTION EXPERIMENTS
4.2 EVALUATION OF MASS TRANSPORT AND SURFACE REACTION RESISTANCES
4.3 EXTERNAL MASS TRANSFER COEFFICIENTS FROM THE LITERATURE
5. CONCLUSIONS
NOMENCLATURE
ACKNOWLEDGMENTS
REFERENCES
Chapter-4-4---An-Experimental-Study-on-the-Effects-of-_2018_Exergetic--Energ.pdf (p.955-970)
4.4 - AN EXPERIMENTAL STUDY ON THE EFFECTS OF INLET WATER INJECTION OF DIESEL ENGINE HEAT RELEASE RATE, FUEL CONSUM ...
1. INTRODUCTION
2. DESCRIPTION OF EXPERIMENTAL SYSTEM
2.1 EXPERIMENTAL APPARATUS
2.2 EXPERIMENTAL PROCEDURE
3. EVALUATION OF EXPERIMENTAL MEASUREMENTS
3.1 ENGINE PERFORMANCE CHARACTERISTICS AND HRR CALCULATIONS
3.2 ERROR ANALYSIS AND UNCERTAINTIES
4. RESULTS AND DISCUSSIONS
4.1 THE EFFECTS OF WATER ADDITION ON HRR, TEMPERATURE, PRESSURE, AND BRAKE-SPECIFIC FUEL CONSUMPTION
4.2 THE EFFECTS OF WATER ADDITION ON NOX EMISSIONS AND OPACITY
5. CONCLUSIONS
NOMENCLATURE
ACKNOWLEDGMENTS
REFERENCES
Chapter-4-5---Carbon-Captu_2018_Exergetic--Energetic-and-Environmental-Dimen.pdf (p.971-990)
4.5 - CARBON CAPTURE
1. INTRODUCTION
2. CARBON CAPTURE TECHNOLOGIES
2.1 PRECOMBUSTION CO2 CAPTURE
2.2 OXY-COMBUSTION CO2 CAPTURE
2.3 POSTCOMBUSTION CO2 CAPTURE
3. COMPARISONS AMONG CARBON CAPTURE TECHNOLOGIES
3.1 COMPARISON OF TECHNOLOGIES IN TERMS OF MATURITY
3.2 COMPARISON OF ADVANTAGES OF THE TECHNOLOGIES
3.3 COMPARISON OF DISADVANTAGES OF THE TECHNOLOGIES
3.4 COMPARISON OF TECHNOLOGIES IN TERMS OF ECONOMY
4. CARBON CAPTURE FOR INDUSTRIAL APPLICATIONS
4.1 CEMENT AND CLINKER PRODUCTION
4.2 IRON AND STEEL INDUSTRY
4.3 WATER DESALINATION PROCESSES
4.4 OIL REFINERY
4.5 GAS-TO-LIQUID PROCESS
4.6 ETHYLENE OXIDE PRODUCTION
5. SUMMARY AND CONCLUSIONS
NOMENCLATURE
ACKNOWLEDGMENTS
REFERENCES
Chapter-4-6---Vacuum-Stripping-Membrane-De_2018_Exergetic--Energetic-and-Env.pdf (p.991-1001)
4.6 - VACUUM STRIPPING MEMBRANE DESALINATION FOR MARMARA SEAWATER
1. INTRODUCTION
2. EXPERIMENTAL APPARATUS AND PROCEDURE
2.1 MEMBRANE PREPARATION PROCEDURE
2.2 MEMBRANE CHARACTERIZATION PROCEDURE
2.3 SWELLING PROCEDURE
2.4 PERVAPORATION APPARATUS
3. RESULTS AND DISCUSSION
3.1 MEMBRANE CHARACTERIZATION RESULTS
3.2 SWELLING RESULTS
3.3 EFFECT OF TEMPERATURE ON SEPARATION PERFORMANCE
3.4 EFFECT OF SALT CONCENTRATION ON SEPARATION PERFORMANCE
4. CONCLUSIONS
ABBREVIATIONS
ACKNOWLEDGMENTS
REFERENCES
Chapter-4-7---Removal-of-Ions-Pb2--and-Cd2--Fr_2018_Exergetic--Energetic-and.pdf (p.1002-1016)
4.7 - REMOVAL OF IONS PB2+ AND CD2+ FROM AQUEOUS SOLUTION BY CONTAINMENT GEOMATERIALS
1. INTRODUCTION
2. EXPERIMENTAL APPARATUS AND PROCEDURE AND CHARACTERIZATION
2.1 ADSORPTION EXPERIMENT AND MODELING
2.2 TEMPERATURE EFFECT AND THERMODYNAMIC PROCESS
3. RESULTS AND DISCUSSION
3.1 ADSORPTION KINETICS OF PB2+ ON GM1, GM2, AND GM3
3.2 ADSORPTION KINETICS OF CD2+ ON GM1
3.3 ADSORPTION ISOTHERM OF PB2+ AND CD2+ ON GM1
3.4 EQUILIBRIUM ADSORPTION MODELING
3.5 TEMPERATURE EFFECT AND THERMODYNAMIC STUDY
3.6 PH EFFECT ON ADSORPTION ISOTHERMS
4. CONCLUSIONS
NOMENCLATURE
REFERENCES
Chapter-4-8---Investigation-of-Irreversibility-W_2018_Exergetic--Energetic-a.pdf (p.1017-1031)
4.8 - INVESTIGATION OF IRREVERSIBILITY WITH CO2 EMISSION MEASUREMENT IN INDUSTRIAL ENAMEL FURNACE
1. INTRODUCTION
2. INDUSTRIAL FURNACES
3. THERMODYNAMIC MODELING
4. RESULTS AND DISCUSSION
4.1 ENERGY ANALYSIS
4.2 EXERGY ANALYSIS
4.3 IMPLEMENTATION PROJECTS
4.4 ENERGY ANALYSIS AFTER EFFICIENCY IMPLEMENTATION PROJECTS
4.5 EXERGY ANALYSES AFTER EFFICIENCY IMPLEMENTATION PROJECTS
4.6 MEASUREMENT OF CO2 EMISSIONS
5. CONCLUSIONS
NOMENCLATURE
REFERENCES
FURTHER READING
Chapter-4-9---Environmental-Flow-Assessm_2018_Exergetic--Energetic-and-Envir.pdf (p.1032-1045)
4.9 - ENVIRONMENTAL FLOW ASSESSMENT METHODS: A CASE STUDY
1. INTRODUCTION
2. REVIEW OF ENVIRONMENTAL FLOW ASSESSMENT METHODS
2.1 CLASSIFICATION OF ENVIRONMENTAL FLOW METHODS
2.1.1 Hydrological Methods
2.1.2 Hydraulic Rating Methods
2.1.3 Habitat Simulation Methods
2.1.4 Holistic Methods
2.2 ENVIRONMENTAL FLOW CONCEPT IN THE WORLD
3. ASSESSMENT OF KANDIL HYDROELECTRIC POWER PLANT BASED ON SELECTED METHODS
3.1 TENNANT METHOD
3.2 FLOW DURATION CURVE METHOD
3.3 ABOUT THE HYDROPOWER PLANT
4. RESULTS AND DISCUSSION
5. CONCLUSIONS
REFERENCES
Index_2018_Exergetic--Energetic-and-Environmental-Dimensions.pdf (p.1046-1082)
Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z




پست ها تصادفی