Experimental Mechanics: An Introduction

دانلود کتاب Experimental Mechanics: An Introduction

دسته: مکانیک

58000 تومان موجود

کتاب مکانیک تجربی: مقدمه نسخه زبان اصلی

دانلود کتاب مکانیک تجربی: مقدمه بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 7


توضیحاتی در مورد کتاب Experimental Mechanics: An Introduction

نام کتاب : Experimental Mechanics: An Introduction
عنوان ترجمه شده به فارسی : مکانیک تجربی: مقدمه
سری : Solid Mechanics and Its Applications, 269
نویسندگان :
ناشر : Springer
سال نشر : 2021
تعداد صفحات : 318
ISBN (شابک) : 3030894657 , 9783030894658
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 8 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.

توضیحاتی در مورد کتاب :




این کتاب به روشی واضح، ساده، سرراست، بدیع و یکپارچه پرکاربردترین روش‌های مکانیک تجربی جامدات را برای تعیین جابجایی‌ها، کرنش‌ها و تنش‌ها ارائه می‌کند. تاکید بر اصول عملکرد روش‌های مختلف است، نه در کاربرد آنها برای مسائل مهندسی. این کتاب در شانزده فصل تقسیم شده است که شامل کرنش سنج ها، اپتیک پایه، موآر هندسی و تداخل سنجی، روش های نوری (فتوالاستیسیته، تداخل سنجی، هولوگرافی، سوزاننده، روش های لکه، همبستگی تصویر دیجیتال)، آنالیز تنش ترموالاستیک، فرورفتگی، فیبرهای نوری، تست غیر مخرب است. و تنش های پسماند این کتاب نه تنها به‌عنوان یک ابزار یادگیری، بلکه به‌عنوان مبنایی که بر اساس آن محقق، مهندس، آزمایش‌گر، دانش‌آموز می‌توانند ایده‌های جدید خود را برای ترویج تحقیق در مکانیک تجربی جامدات توسعه دهند، استفاده خواهد شد.

فهرست مطالب :


Preface
Contents
About the Author
1 Electrical Resistance Strain Gages
1.1 Introduction
1.2 Basic Principles
1.3 Bonded Resistance Strain Gages
1.4 Transverse Sensitivity and Gage Factor
1.5 Electrical Circuits
1.5.1 Introduction
1.5.2 The Potentiometer Circuit
1.5.3 The Wheatstone Bridge
1.6 Strain Gage Rosettes
Further Readings
2 Fundamentals of Optics
2.1 Introduction
2.2 Historical Overview
2.3 Light Sources, Wave Fronts, and Rays
2.4 Reflection and Mirrors
2.4.1 Reflection
2.4.2 Plane Mirrors
2.4.3 Spherical Mirrors
2.5 Refraction
2.6 Thin Lenses
2.7 The Wave Nature of Light—Huygens’ Principle
2.8 Electromagnetic Theory of Light
2.9 Polarization
2.10 Interference
2.10.1 Introduction
2.10.2 Interference of Two Linearly Polarized Beams
2.10.3 Young’s Double-Slit Experiment
2.10.4 Multi-slit Interference
2.10.5 Interference of Two Plane Waves
2.10.6 Change of Phase upon Reflection—Thin Films
2.10.7 Dispersion
2.11 Diffraction
2.11.1 Introduction
2.11.2 Single Slit Diffraction
2.11.3 Two-Slit Diffraction
2.11.4 The Diffraction Grating
2.11.5 Diffraction by a Circular Aperture
2.11.6 Limit of Resolution
2.11.7 Fraunhofer Diffraction as a Fourier Transform
2.11.8 Optical Spatial Filtering
2.12 Camera
Further Readings
3 Geometric Moiré
3.1 Introduction
3.2 Terminology
3.3 The Moiré Phenomenon
3.4 Mathematical Analysis of Moiré Fringes
3.5 Relationships Between Line Grating and Moiré Fringes
3.6 Moiré Patterns Formed by Circular, Radial and Line Gratings
3.7 Measurement of In-Plane Displacements
3.8 Measurement of Out-Of-Plane Displacements
3.9 Measurement of Out-Of-Plane Slopes
3.10 Sharpening of Moiré Fringes
3.11 Moiré of Moiré
Further Readings
4 Coherent Moiré and Moiré Interferometry
4.1 Introduction
4.2 Superposition of Two Diffraction Gratings
4.3 Moiré Patterns
4.4 Optical Filtering and Fringe Multiplication
4.5 Advantages Offered by Coherent Moiré
4.6 Moiré Interferometry
4.6.1 Introduction
4.6.2 Optical Arrangement
4.6.3 The Method
4.6.4 Determination of Strains
Further Readings
5 Moiré Patterns Formed by Remote Gratings
5.1 Introduction
5.2 Geometric Moiré Methods
5.3 The Coherent Grading Sensor (CGS) Method
5.3.1 Introduction
5.3.2 Experimental Arrangement
5.3.3 Governing Equations
5.4 Comparison of the Geometric Moiré and the CGS Method
Further Readings
6 The Method of Caustics
6.1 Introduction
6.2 General Equations for Reflecting Surfaces
6.3 The Ellipsoid Mirror
6.4 Intensity Distribution of Light Rays Reflected or Transmitted by a Transparent Specimen
6.5 Stress-Optical Equations
6.6 Crack Problems
6.6.1 Introduction
6.6.2 Principle of the Method
6.6.3 Opening-Mode Loading
6.6.4 Mixed-Mode Loading
6.6.5 Anisotropic Materials
6.6.6 The State of Stress Near the Crack Tip
6.6.7 Comparison of the Method of Caustics and Photoelasticity
Further Readings
7 Photoelasticity
7.1 Introduction
7.2 Plane Polariscope
7.3 Circular Polariscope
7.4 Isoclinics
7.5 Isochromatics
7.6 Isochromatics with White Light
7.7 Properties of Isoclinics
7.8 Properties of Isochromatics
7.9 Compensation Methods
7.9.1 Introduction
7.9.2 The Tension/Compression Specimen
7.9.3 Babinet and Babinet-Soleil Compensators
7.9.4 Sernarmont Compensation Method
7.9.5 Tardy Compensation Method
7.10 Determination of the Photoelastic Constant fs
7.11 Stress Separation
7.12 Fringe Multiplication and Sharpening
7.13 Transition From Model to Prototype
7.14 Three-Dimensional Photoelasticity
7.15 Photoelastic Coatings
7.15.1 Introduction
7.15.2 Transfer of Stresses From Body to Coating
7.15.3 Determination of Stresses
7.15.4 Reinforcing Effect
7.15.5 Photoelastic Strain Gages
Further Readings
8 Interferometry
8.1 Introduction
8.2 Interferometers
8.3 Analysis of Interferometers
8.3.1 Introduction
8.3.2 The Mach–Zehnder Interferometer
8.3.3 The Michelson Interferometer
8.3.4 The Fizeau-Type Interferometer
8.3.5 Other Interferometers
8.3.6 A Generic Analysis of Interferometers
Further Readings
9 Holography
9.1 Introduction
9.2 Recording and Reconstruction Processes
9.3 Holographic Interferometry
9.3.1 Introduction
9.3.2 Real-Time Holographic Interferometry
9.3.3 Double-Exposure Holographic Interferometry
9.3.4 Sensitivity Vector
9.4 Holographic Photoelasticity
9.4.1 Introduction
9.4.2 Isochromatic-Isopachic Patterns
9.4.3 Generic Interpretation
Further Readings
10 Optical Fiber Strain Sensors
10.1 Introduction
10.2 Optical Fibers
10.2.1 Introduction
10.2.2 Structure
10.2.3 Principle of Operation
10.2.4 Applications
10.2.5 Advantages and Disadvantages
10.3 Fiber Optic Sensors (FOS)
10.3.1 Architecture of a FOS
10.3.2 Classification of FOSs
10.3.3 Interferometric FOSs
10.3.4 Fiber Bragg Grating Sensors (FBGSs)
10.3.5 Multiplexing
10.3.6 Advantages and Disadvantages of FOSs
10.3.7 Applications of FOSs
Further Readings
11 Speckle Methods
11.1 Introduction
11.2 The Speckle Effect
11.3 Speckle Photography
11.3.1 Introduction
11.3.2 Point-by-Point Interrogation of the Specklegram
11.3.3 Spatial Filtering of the Specklegram
11.4 Speckle Interferometry
11.5 Shearography
11.6 Electronic Speckle Pattern Interferometry (ESPI)
Further Readings
12 Digital Image Correlation (DIC)
12.1 Introduction
12.2 Steps of DIC
12.3 Speckle Patterning
12.4 Image Digitization
12.5 Intensity Interpolation
12.6 Image Correlation—Displacement Measurement
12.7 2-D DIC
12.8 3-D DIC
12.9 Volumetric Digital Image Correlation (V-DIC)
Further Readings
13 Thermoelastic Stress Analysis (TSA)
13.1 Introduction
13.2 Thermoelastic Law
13.3 Infrared Detectors
13.4 Adiabaticity
13.5 Specimen Preparation
13.6 Calibration
13.7 Stress Separation
13.8 Applications
Further Readings
14 Indentation Testing
14.1 Introduction
14.2 Contact Mechanics
14.3 Macro-indentation Testing
14.3.1 Brinell Test
14.3.2 Meyer Test
14.3.3 Vickers Test
14.3.4 Rockwell Test
14.4 Micro-indentation Testing
14.4.1 Vickers Test
14.4.2 Knoop Test
14.5 Nanoindentation Testing
14.5.1 Introduction
14.5.2 The Elastic Contact Method
14.5.3 Nanoindentation for Measuring Fracture Toughness
Further Readings
15 Nondestructive Testing (NDT)
15.1 Introduction
15.2 Dye Penetrant Inspection (DPI)
15.2.1 Principle
15.2.2 Application
15.2.3 Advantages and Disadvantages
15.3 Magnetic Particles Inspection (MPI)
15.3.1 Principle
15.3.2 Advantages and Disadvantages
15.4 Eddy Currents Inspection (ECI)
15.4.1 Principle
15.4.2 Advantages and Disadvantages
15.5 X-ray Diffraction (XRD)
15.5.1 Introduction
15.5.2 X-rays
15.5.3 X-ray Diffraction
15.5.4 Measurement of Strain
15.5.5 Instrumentation
15.6 Ultrasonic Testing (UT)
15.6.1 Introduction
15.6.2 Operation
15.6.3 Advantages and Disadvantages
15.7 Acoustic Emission Testing (AET)
15.7.1 Introduction
15.7.2 Acoustic Emission Testing
15.7.3 Advantages and Disadvantages
Further Readings
16 Residual Stresses—The Hole-Drilling Method
16.1 Introduction
16.2 Hole-Drilling Method
16.3 Uniaxial Residual Stresses
16.4 Biaxial Residual Stresses
16.5 Variation of Residual Stresses Through the Thickness
16.6 Nondestructive Methods for Measuring Residual Stresses
Further Readings
Index

توضیحاتی در مورد کتاب به زبان اصلی :



The book presents in a clear, simple, straightforward, novel  and unified manner the most used methods of experimental mechanics of solids for the determination of displacements, strains and stresses. Emphasis is given on the principles of operation of the various methods, not in their applications to engineering problems. The book is divided into sixteen chapters which include strain gages, basic optics, geometric and interferometric moiré, optical methods (photoelasticity, interferometry, holography, caustics, speckle methods, digital image correlation), thermoelastic stress analysis, indentation, optical fibers, nondestructive testing, and residual stresses. The book will be used not only as a learning tool, but as a basis on which the researcher, the engineer, the experimentalist, the student can develop their new own ideas to promote research in experimental mechanics of solids.



پست ها تصادفی