Exploratory Data Analysis with Python Cookbook: Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data

دانلود کتاب Exploratory Data Analysis with Python Cookbook: Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data

48000 تومان موجود

کتاب تجزیه و تحلیل داده های اکتشافی با آشپزی پایتون: بیش از 50 دستور العمل برای تجزیه و تحلیل، تجسم و استخراج بینش از داده های ساختاریافته و بدون ساختار نسخه زبان اصلی

دانلود کتاب تجزیه و تحلیل داده های اکتشافی با آشپزی پایتون: بیش از 50 دستور العمل برای تجزیه و تحلیل، تجسم و استخراج بینش از داده های ساختاریافته و بدون ساختار بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 12


توضیحاتی در مورد کتاب Exploratory Data Analysis with Python Cookbook: Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data

نام کتاب : Exploratory Data Analysis with Python Cookbook: Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data
عنوان ترجمه شده به فارسی : تجزیه و تحلیل داده های اکتشافی با کتاب آشپزی پایتون: بیش از 50 دستور العمل برای تجزیه و تحلیل، تجسم و استخراج بینش از داده های ساختاریافته و بدون ساختار
سری :
نویسندگان :
ناشر : Packt Publishing
سال نشر :
تعداد صفحات : 382
ISBN (شابک) : 1803231106 , 9781803231105
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 9 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Title Page
Copyright and Credits
Dedication
Contributors
Table of Contents
Preface
Chapter 1: Generating Summary Statistics
Technical requirements
Analyzing the mean of a dataset
Getting ready
How to do it…
How it works...
There’s more...
Checking the median of a dataset
Getting ready
How to do it…
How it works...
There’s more...
Identifying the mode of a dataset
Getting ready
How to do it…
How it works...
There’s more...
Checking the variance of a dataset
Getting ready
How to do it…
How it works...
There’s more…
Identifying the standard deviation of a dataset
Getting ready
How to do it…
How it works...
There’s more...
Generating the range of a dataset
Getting ready
How to do it…
How it works...
There’s more...
Identifying the percentiles of a dataset
Getting ready
How to do it…
How it works...
There’s more...
Checking the quartiles of a dataset
Getting ready
How to do it…
How it works...
There’s more...
Analyzing the interquartile range (IQR) of a dataset
Getting ready
How to do it…
How it works...
Chapter 2: Preparing Data for EDA
Technical requirements
Grouping data
Getting ready
How to do it…
How it works...
There’s more...
See also
Appending data
Getting ready
How to do it…
How it works...
There’s more...
Concatenating data
Getting ready
How to do it…
How it works...
There’s more...
See also
Merging data
Getting ready
How to do it…
How it works...
There’s more...
See also
Sorting data
Getting ready
How to do it…
How it works...
There’s more...
Categorizing data
Getting ready
How to do it…
How it works...
There’s more...
Removing duplicate data
Getting ready
How to do it…
How it works...
There’s more...
Dropping data rows and columns
Getting ready
How to do it…
How it works...
There’s more...
Replacing data
Getting ready
How to do it…
How it works...
There’s more...
See also
Changing a data format
Getting ready
How to do it…
How it works...
There’s more...
See also
Dealing with missing values
Getting ready
How to do it…
How it works...
There’s more...
See also
Chapter 3: Visualizing Data in Python
Technical requirements
Preparing for visualization
Getting ready
How to do it…
How it works...
There’s more...
Visualizing data in Matplotlib
Getting ready
How to do it…
How it works...
There’s more...
See also
Visualizing data in Seaborn
Getting ready
How to do it…
How it works...
There’s more...
See also
Visualizing data in GGPLOT
Getting ready
How to do it…
How it works...
There’s more...
See also
Visualizing data in Bokeh
Getting ready
How to do it…
How it works...
There\'s more...
See also
Chapter 4: Performing Univariate Analysis in Python
Technical requirements
Performing univariate analysis using a histogram
Getting ready
How to do it…
How it works...
Performing univariate analysis using a boxplot
Getting ready
How to do it…
How it works...
There’s more...
Performing univariate analysis using a violin plot
Getting ready
How to do it…
How it works...
Performing univariate analysis using a summary table
Getting ready
How to do it…
How it works...
There’s more...
Performing univariate analysis using a bar chart
Getting ready
How to do it…
How it works...
Performing univariate analysis using a pie chart
Getting ready
How to do it…
How it works...
Chapter 5: Performing Bivariate Analysis in Python
Technical requirements
Analyzing two variables using a scatter plot
Getting ready
How to do it…
How it works...
There’s more...
See also...
Creating a crosstab/two-way table on bivariate data
Getting ready
How to do it…
How it works...
Analyzing two variables using a pivot table
Getting ready
How to do it…
How it works...
There is more...
Generating pairplots on two variables
Getting ready
How to do it…
How it works...
Analyzing two variables using a bar chart
Getting ready
How to do it…
How it works...
There is more...
Generating box plots for two variables
Getting ready
How to do it…
How it works...
Creating histograms on two variables
Getting ready
How to do it…
How it works...
Analyzing two variables using a correlation analysis
Getting ready
How to do it…
How it works...
Chapter 6: Performing Multivariate Analysis in Python
Technical requirements
Implementing Cluster Analysis on multiple variables using Kmeans
Getting ready
How to do it…
How it works...
There is more...
See also...
Choosing the optimal number of clusters in Kmeans
Getting ready
How to do it…
How it works...
There is more...
See also...
Profiling Kmeans clusters
Getting ready
How to do it…
How it works...
There’s more...
Implementing principal component analysis on multiple variables
Getting ready
How to do it…
How it works...
There is more...
See also...
Choosing the number of principal components
Getting ready
How to do it…
How it works...
Analyzing principal components
Getting ready
How to do it…
How it works...
There’s more...
See also...
Implementing factor analysis on multiple variables
Getting ready
How to do it…
How it works...
There is more...
Determining the number of factors
Getting ready
How to do it…
How it works...
Analyzing the factors
Getting ready
How to do it…
How it works...
Chapter 7: Analyzing Time Series Data in Python
Technical requirements
Using line and boxplots to visualize time series data
Getting ready
How to do it…
How it works...
Spotting patterns in time series
Getting ready
How to do it…
How it works...
Performing time series data decomposition
Getting ready
How to do it…
How it works...
Performing smoothing – moving average
Getting ready
How to do it…
How it works…
See also...
Performing smoothing – exponential smoothing
Getting ready
How to do it…
How it works...
See also...
Performing stationarity checks on time series data
Getting ready
How to do it…
How it works...
See also…
Differencing time series data
Getting ready
How to do it…
How it works...
Getting ready
How to do it…
How it works...
See also...
Chapter 8: Analysing Text Data in Python
Technical requirements
Preparing text data
Getting ready
How to do it…
How it works...
There’s more…
See also…
Dealing with stop words
Getting ready
How to do it…
How it works...
There’s more…
Analyzing part of speech
Getting ready
How to do it…
How it works...
Performing stemming and lemmatization
Getting ready
How to do it…
How it works...
Analyzing ngrams
Getting ready
How to do it…
How it works...
Creating word clouds
Getting ready
How to do it…
How it works...
Checking term frequency
Getting ready
How to do it…
How it works...
There’s more…
See also
Checking sentiments
Getting ready
How to do it…
How it works...
There’s more…
See also
Performing Topic Modeling
Getting ready
How to do it…
How it works...
Choosing an optimal number of topics
Getting ready
How to do it…
How it works...
Chapter 9: Dealing with Outliers and Missing Values
Technical requirements
Identifying outliers
Getting ready
How to do it…
How it works...
Spotting univariate outliers
Getting ready
How to do it…
How it works...
Finding bivariate outliers
Getting ready
How to do it…
How it works...
Identifying multivariate outliers
Getting ready
How to do it…
How it works...
See also
Flooring and capping outliers
Getting ready
How to do it…
How it works...
Removing outliers
Getting ready
How to do it…
How it works...
Replacing outliers
Getting ready
How to do it…
How it works...
Identifying missing values
Getting ready
How to do it…
How it works...
Dropping missing values
Getting ready
How to do it…
How it works...
Replacing missing values
Getting ready
How to do it…
How it works...
Imputing missing values using machine learning models
Getting ready
How to do it…
How it works...
Chapter 10: Performing Automated Exploratory Data Analysis in Python
Technical requirements
Doing Automated EDA using pandas profiling
Getting ready
How to do it…
How it works...
See also…
Performing Automated EDA using dtale
Getting ready
How to do it…
How it works...
See also
Doing Automated EDA using AutoViz
Getting ready
How to do it…
How it works...
See also
Performing Automated EDA using Sweetviz
Getting ready
How to do it…
How it works...
See also
Implementing Automated EDA using custom functions
Getting ready
How to do it…
How it works...
There’s more…
Index
About Packt
Other Books You May Enjoy




پست ها تصادفی