Extracellular Matrix: Pathobiology and Signaling

دانلود کتاب Extracellular Matrix: Pathobiology and Signaling

53000 تومان موجود

کتاب ماتریکس خارج سلولی: پاتوبیولوژی و سیگنالینگ نسخه زبان اصلی

دانلود کتاب ماتریکس خارج سلولی: پاتوبیولوژی و سیگنالینگ بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد

این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 8


توضیحاتی در مورد کتاب Extracellular Matrix: Pathobiology and Signaling

نام کتاب : Extracellular Matrix: Pathobiology and Signaling
عنوان ترجمه شده به فارسی : ماتریکس خارج سلولی: پاتوبیولوژی و سیگنالینگ
سری :
نویسندگان : , , , , , ,
ناشر : De Gruyter
سال نشر : 2012
تعداد صفحات : 940
ISBN (شابک) : 9783110258776 , 9783110258769
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 9 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Preface\nComments on the book Extracellular Matrix: Pathobiology & Signaling by Dick Heinegård\nAbout the Editor/Section Editors\nList of contributing authors\nAbbreviations and acronyms used\n1 An introduction to the extracellular matrix molecules and their importance in pathobiology and signaling\n 1.1 Extracellular matrix: a functional scaffold\n 1.1.1 ECM components: structural and functional properties\n 1.1.2 Matrix remodeling is accomplished by proteolytic enzymes\n 1.1.3 Cell surface receptors mediate cell-cell and cell-matrix interactions\n 1.1.4 Take-home message\n2 Insights into the function of glycans\n 2.1 Introduction\n 2.2 Metabolic control of hyaluronan synthesis\n 2.2.1 Introduction\n 2.2.2 Transcription of hyaluronan synthases\n 2.2.3 UDP-sugar substrates as limiting factors in hyaluronan synthesis\n 2.2.4 Posttranslational processing of HAS\n 2.2.5 Challenges and future prospects\n 2.2.6 Take-home message\n 2.3 Multiple roles of hyaluronan as a target and modifier of the inflammatory response\n 2.3.1 Introduction\n 2.3.2 Endothelial permeability\n 2.3.3 Angiogenesis\n 2.3.4 Mechanisms of hyaluronan degradation\n 2.3.5 Consequences of hyaluronan fragmentation\n 2.3.6 Hyaluronan cross-talk with leukocytes\n 2.3.7 Adhesion of leukocytes to hyaluronan\n 2.3.8 Hyaluronan removal in the late phase of inflammation\n 2.3.9 Local clearance of hyaluronan\n 2.3.10 Chronic inflammation\n 2.3.11 Hyaluronan increase in wounds\n 2.3.12 Support of migration and proliferation\n 2.3.13 TGF-β and myofibroblasts\n 2.3.14 Therapeutic applications\n 2.3.15 Future perspectives\n 2.3.16 Take-home message\n 2.4 Roles of sulfated and nonsulfated glycosaminoglycans in cancer growth and progression-therapeutic implications\n 2.4.1 Introduction\n 2.4.2 Heparin and heparan sulfate affect key tumor cell functions\n 2.4.3 Chondroitin sulfate participates in cancer cell, tumor stroma, and tumor microenvironement interactions to affect cancer progression\n 2.4.4 HA synthesis is correlated to cancer progression\n 2.4.5 Challenges and future prospects\n 2.4.6 Take-home message\n 2.5 Heparan sulfate design: regulation of biosynthesis\n 2.5.1 Heparan sulfate – an extracellular component with variable structure\n 2.5.2 How is heparan sulfate synthesized and which enzymes contribute?\n 2.5.3 Fine-tuning of heparan sulfate structure in the right place, at the right time\n 2.5.4 Disturbed heparan sulfate biosynthesis in human pathobiology\n 2.5.5 Take-home message\n 2.6 Bone and skin disorders caused by a disturbance in the biosynthesis of chondroitin sulfate and dermatan sulfate\n 2.6.1 Introduction\n 2.6.2 Biosynthetic pathways of CS and DS chains\n 2.6.3 Human congenital disorders caused by mutations of the enzymes involved in the biosynthesis of CS and DS\n 2.6.4 Challenges and future prospects\n 2.6.5 Take-home message\n 2.6.6 Abbreviations\n 2.7 Biological functions of branched N-glycans related to physiology and pathology of extracellular matrix\n 2.7.1 Introduction\n 2.7.2 Synthesis of branched N-glycans\n 2.7.3 Effect of N-glycosylation on ECM formation\n 2.7.4 Complexity of N-glycan branch modulates cellular functions via clustering cell surface proteins\n 2.7.5 Branched N-glycans regulate the biological functions of integrins\n 2.7.6 The mutual regulation of N-glycosylation and cadherins\n 2.7.7 Challenges and future prospects\n 2.7.8 Take-home message\n3 Proteoglycans: structure, pathobiology, and signaling\n 3.1 Introduction\n 3.2 Aggrecan in skeletal development and regenerative medicine\n 3.2.1 Introduction\n 3.2.2 Aggrecan in skeletal development\n 3.2.3 Aggrecan in regenerative medicine\n 3.2.4 Take-home message\n 3.3 The pathobiology of versican\n 3.3.1 Introduction\n 3.3.2 Cardiovascular disease\n 3.3.3 Cancer\n 3.3.4 Lung\n 3.3.5 Eye\n 3.3.6 Concluding remarks\n 3.3.7 Take-home message\n 3.4 The biology of perlecan and its bioactive modules\n 3.4.1 Introduction\n 3.4.2 Discovery\n 3.4.3 Expression and localization\n 3.4.4 Protein family\n 3.4.5 The HSPG2 gene\n 3.4.6 Domain structure and known interactions\n 3.4.7 Genetic links to diseases\n 3.4.8 Genetic models\n 3.4.9 Perlecan role in cancer\n 3.4.10 Perlecan role in vascular biology and angiogenesis\n 3.4.11 Conclusions and future directions\n 3.4.12 Take-home message\n 3.5 Small leucine-rich proteoglycans: multifunctional signaling effectors\n 3.5.1 Introduction\n 3.5.2 Physiological functions\n 3.5.3 Pathobiology of class I SLRPs\n 3.5.4 Pathobiology of class II SLRPs\n 3.5.5 Pathobiology of class III SLRPs\n 3.5.6 Take-home message\n 3.6 Structure and function of syndecans\n 3.6.1 Syndecan stucture\n 3.6.2 Function of syndecans\n 3.6.3 Syndecan domains and their roles\n 3.6.4 Take-home message\n 3.7 The glypican family\n 3.7.1 The structure of glypicans\n 3.7.2 The functions of glypicans\n 3.7.3 Pathobiology of glypicans\n 3.7.4 Future research\n 3.7.5 Take-home message\n 3.8 Serglycin proteoglycan: implications for thrombosis, inflammation, atherosclerosis, and metastasis\n 3.8.1 Introduction\n 3.8.2 Cloning and cell and tissue localization of serglycin\n 3.8.3 Cell-specific serglycin structure\n 3.8.4 Regulation of serglycin expression\n 3.8.5 Binding of cell-specific serglycin to biologically active proteins\n 3.8.6 Serglycin in hematopoietic cells\n 3.8.7 Serglycin in nonhematopoietic cells\n 3.8.8 The serglycin knockout mouse\n 3.8.9 Challenges and future prospects\n 3.8.10 Take-home message\n4 Matrix proteinases: biological significance in health and disease\n 4.1 Introduction\n 4.2 Extracellular functions of cysteine proteases\n 4.2.1 Introduction\n 4.2.2 Cysteine proteases and their inhibitors\n 4.2.3 Endogenous inhibitors of cysteine proteases\n 4.2.4 Cysteine proteases and their inhibitors in diseases\n 4.2.5 Pharmacological targeting of cysteine proteases\n 4.2.6 Take-home message\n 4.3 Plasmin and the plasminogen activator system in health and disease\n 4.3.1 Introduction\n 4.3.2 Plasmin\n 4.3.3 Plasminogen activators\n 4.3.4 Inhibitors of plasminogen activators\n 4.3.5 Plasmin substrates\n 4.3.6 Inhibitors of plasmin\n 4.3.7 Plasmin system in cancer\n 4.3.8 Take-home message\n 4.4 Matrix metalloproteinase complexes and their biological significance\n 4.4.1 Introduction\n 4.4.2 MMP structure and classification\n 4.4.3 MMP complexes\n 4.4.4 Take-home message\n 4.5 The ADAMTS family of metalloproteinases\n 4.5.1 Introduction\n 4.5.2 The ADAMTS family\n 4.5.3 Three-dimensional structures of ADAMTSs\n 4.5.4 Procollagen N-proteinases (ADAMTS2, 3, and 14)\n 4.5.5 Aggrecanases\n 4.5.6 Inhibition of angiogenesis by ADAMTSs\n 4.5.7 Von Willebrand factor-cleaving proteinase: ADAMTS13\n 4.5.8 ADAMTS18 and dissolution of platelet aggregates\n 4.5.9 Atherosclerosis\n 4.5.10 ADAMTSs and morphogenesis\n 4.5.11 Wound healing\n 4.5.12 Ovulation\n 4.5.13 Future prospects\n 4.5.14 Take-home message\n 4.6 Proteinases in wound healing\n 4.6.1 Introduction\n 4.6.2 Overview of cutaneous wound repair\n 4.6.3 Hemostasis and inflammation\n 4.6.4 Reepithelialization\n 4.6.5 Granulation tissue formation\n 4.6.6 Tissue remodeling and wound maturation\n 4.6.7 Growth factors and cytokines regulating cutaneous wound healing\n 4.6.8 Proteolysis in cutaneous wound healing\n 4.6.9 PA-plasmin system\n 4.6.10 Matrix metalloproteinases\n 4.6.11 ADAM proteinases\n 4.6.12 ADAMTS proteinases\n 4.6.13 TIMPs and chemical targeting of metalloproteinases\n 4.6.14 Proteolysis in aberrant cutaneous wound healing\n 4.6.15 Targeting proteolysis – applications for wound-healing therapy\n 4.6.16 Take-home message\n 4.7 Rock, paper, and molecular scissors: regulating the game of extracellular matrix homeostasis, remodeling, and inflammation\n 4.7.1 Proteases\n 4.7.2 Matrix metalloproteinases\n 4.7.3 Natural inhibitors of MMPs\n 4.7.4 MMPs in cancer\n 4.7.5 MMPs in Inflammation\n 4.7.6 MMP inhibitors and clinical trials\n 4.7.7 The protease web\n 4.7.8 Degradomics\n 4.7.9 The CLIP-CHIP, a dedicated and focused microarray for every protease and inhibitor\n 4.7.10 Classic biochemical approaches\n 4.7.11 Sodium dodecyl sulfate polyacrylamide gel electrophoresis, zymography, mass spectrometry, and high-performance liquid chromatography\n 4.7.12 Proteomic identification of protease cleavage site specificity\n 4.7.13 Yeast two-hybrid analyses: exosite scanning and inactive-catalytic-domain capture\n 4.7.14 Amino-terminal-oriented mass spectrometry of substrates\n 4.7.15 Quantitative N- and C-terminal proteomics for substrate discovery\n 4.7.16 N-terminal combined fractional diagonal chromatography\n 4.7.17 N-terminal amine isotopic labeling of substrates\n 4.7.18 C terminomics and C-terminal amine-based isotope labeling of substrates\n 4.7.19 Perspectives and Take-home message\n5 ECM cell surface receptors\n 5.1 Introduction\n 5.2 Integrin function in heart fibrosis: mechanical strain, transforming growth factor-beta 1 activation, and collagen glycation\n 5.2.1 Introduction\n 5.2.2 Cardiac fibrosis – the players\n 5.2.3 ECM posttranslational modifications in fibrosis: type 1 and type 2 diabetes\n 5.2.4 Interaction of integrins with glycated collagen\n 5.2.5 TGF-β and integrins - a close relationship\n 5.2.6 Conclusions\n 5.2.7 Take-home message\n 5.3 Cancer-associated fibroblast integrins as therapeutic targets in the tumor microenvironment\n 5.3.1 Introduction\n 5.3.2 CAF Biology\n 5.3.3 Integrins on CAFs\n 5.3.4 Integrin function on CAF precursors\n 5.3.5 Integrin function in CAF differentiation\n 5.3.6 CAF integrins and tumor cell proliferation\n 5.3.7 Integrin function in CAF-promoted invasion and metastasis\n 5.3.8 Summary\n 5.4 Discoidin domain receptors: non-integrin collagen receptors on the move\n 5.4.1 Introduction\n 5.4.2 Collagen and collagen receptors\n 5.4.3 Discoidin domain receptor subfamily of receptor tyrosine kinases\n 5.4.4 Functions of DDRs\n 5.4.5 Conclusions\n 5.4.6 Take-home message\n 5.5 Syndecans as receptors for pericellular molecules\n 5.5.1 Introduction\n 5.5.2 Syndecans as cell surface ECM receptors\n 5.5.3 Syndecans as receptors mediating endocytosis\n 5.5.4 Syndecans as receptors for growth factors and chemokines\n 5.5.5 Perspective – specificity of syndecans and their signaling responses\n 5.5.6 Take-home message\n 5.6 CD44: a Sensor of tissue damage critical for restoring homeostasis\n 5.6.1 Introduction\n 5.6.2 CD44 structure and processing\n 5.6.3 Hyaluronan and other ligands of CD44\n 5.6.4 CD44-mediated signaling\n 5.6.5 CD44 function in mesenchymal stromal cells\n 5.6.6 CD44 function in leukocytes\n 5.6.7 Role of CD44 in the resolution of inflammation\n 5.6.8 CD44 in disease and as a potential therapeutic target\n 5.6.9 Concluding remarks\n 5.6.10 Take-home message\n6 Collagen: insights into the folding, assembly and functions\n 6.1 Introduction\n 6.2 Trimerization domains in collagens: chain selection, folding initiation, and triple-helix stabilization\n 6.2.1 Introduction\n 6.2.2 Chain selection and trimerization\n 6.2.3 Trimerization domains and triple-helix folding and stabilization\n 6.2.4 Pathologies associated with trimerization domains\n 6.2.5 Future prospects and challenges\n 6.2.6 Take-home message\n 6.3 Structural basis of collagen missense mutations\n 6.3.1 Introduction: collagens and disease\n 6.3.2 Peptide models of collagen mutations\n 6.3.3 Computational analysis\n 6.3.4 Collagen mutations in a recombinant bacterial system\n 6.3.5 Summary and take-home message\n 6.4 Roles and regulation of BMP1/Tolloid-like proteinases: collagen/matrix assembly, growth factor activation, and beyond\n 6.4.1 Introduction\n 6.4.2 BMP1/Tolloid-like proteinases\n 6.4.3 Substrates\n 6.4.4 Endogenous regulators of activity\n 6.4.5 Meprins and matrix assembly\n 6.4.6 Conclusions and take-home message\n 6.5 Supramolecular assembly of type I collagen\n 6.5.1 Introduction\n 6.5.2 The multimodal fibrils: tendon, bone, and ligaments\n 6.5.3 The unimodal fibrils: cornea, sheaths, and blood vessels\n 6.5.4 Take-home message\n 6.6 Collagen interactomes: mapping functional domains and mutations on fibrillar and network-forming collagens\n 6.6.1 Collagen interactomes\n 6.6.2 Type I collagen interactome\n 6.6.3 Type IV collagen interactome\n 6.6.4 Type III collagen interactome\n 6.6.5 Type II collagen\n 6.6.6 Type X collagen\n 6.6.7 Future perspectives\n 6.6.8 Take-home message\n 6.7 Collagen-binding proteins\n 6.7.1 Introduction\n 6.7.2 Heat-shock protein 47\n 6.7.3 Pigment epithelium-derived factor\n 6.7.4 Fibronectin\n 6.7.5 Von Willebrand factor\n 6.7.6 Glycoprotein VI\n 6.7.7 Leukocyte-associated immunoglobulin-like receptor-1\n 6.7.8 Discoidin domain receptors (DDR)\n 6.7.9 Secreted protein acidic and rich in cysteine\n 6.7.10 Take-home message\n7 Emerging aspects in extracellular matrix pathobiology\n 7.1 Introduction\n 7.2 Extracellular matrix in breast cancer: permissive and restrictive influences emanating from the stroma\n 7.2.1 Introduction\n 7.2.2 The extracellular context in the mammary gland\n 7.2.3 The physical role of connective tissue stroma\n 7.2.4 The proteomic lesson\n 7.2.5 Concluding remarks\n 7.2.6 Challenges and future prospects\n 7.2.7 Take-home message\n 7.3 EMMPRIN/CD147: potential functions in tumor microenvironment and therapeutic target for human cancer\n 7.3.1 Introduction\n 7.3.2 Protease-inducing activity of EMMPRIN: role in tumor cell invasion\n 7.3.3 Role of EMMPRIN in myofibroblast differentiation\n 7.3.4 Role of EMMPRIN in angiogenesis\n 7.3.5 Shedding of EMMPRIN\n 7.3.6 EMMPRIN as a therapeutic target for human cancer\n 7.3.7 Take-home message\n 7.4 Implication of hyaluronidases in cancer growth, metastasis, diagnosis, and treatment\n 7.4.1 Introduction\n 7.4.2 Hyaluronidases in cancer\n 7.4.3 Regulation of hyaluronidase activity\n 7.4.4 Hyaluronidases and cell cycle progression\n 7.4.5 Anticancer properties of hyaluronidases\n 7.4.6 Further medical applications of hyaluronidases\n 7.4.7 Challenges and future prospects\n 7.4.8 Take-home message\n 7.5 Structure-function relationship of syndecan-1, with focus on nuclear translocation and tumor cell behavior\n 7.5.1 Syndecans\n 7.5.2 Structural organization\n 7.5.3 Functional domains and cellular interactions\n 7.5.4 Cellular distribution and nuclear translocation\n 7.5.5 Nuclear interactions\n 7.5.6 Syndecan-1 expression in normal tissues\n 7.5.7 Syndecan-1 in cancers\n 7.5.8 Syndecan expression affects tumor cell behavior\n 7.5.9 Potential for translation\n 7.5.10 Take-home message\n 7.6 Serglycin: a novel player in the terrain of neoplasia\n 7.6.1 Introduction\n 7.6.2 Expression of serglycin in malignancies\n 7.6.3 Regulation of serglycin gene expression\n 7.6.4 Functional importance of serglycin in malignancies\n 7.6.5 Serglycin regulates the secretion of proteolytic enzymes\n 7.6.6 Serglycin regulates the secretion and properties of inflammatory mediators\n 7.6.7 Take-home message\n 7.7 Quantifying cell-ECM pathobiology in 3D\n 7.7.1 Introduction\n 7.7.2 Importance of three-dimensional culture systems\n 7.7.3 Advancements in 3D quantification\n 7.7.4 Future directions\n 7.7.5 Take-home message\n 7.8 Diabetic foot infections\n 7.8.1 Introduction\n 7.8.2 Serological diagnosis of osteitis in foot infection in diabetes mellitus\n 7.8.3 Conclusion and summary\n 7.8.4 Take-home message\n8 Targeting tumor microenvironment at the ECM level\n 8.1 Introduction\n 8.2 Targeting the tumor microenvironment in cancer progression\n 8.2.1 Targeting the tumor microenvironment\n 8.2.2 Cancer stem cells\n 8.2.3 Tumor angiogenesis: new concepts about the tumor microenvironment\n 8.2.4 CD44 in tumor biology\n 8.2.5 Take-home message\n 8.3 Growth factor signaling and extracellular matrix\n 8.3.1 Introduction\n 8.3.2 Interplay of growth factors and ECM\n 8.3.3 Growth factor signaling regulates ECM composition\n 8.3.4 Effect of ECM on growth factor action\n 8.3.5 Pharmacological Interventions\n 8.3.6 Take-home message\n 8.4 Targeting protein-glycan interactions at cell surface during EMT and hematogenous metastasis: consequences on tumor invasion and metastasis\n 8.4.1 Introduction\n 8.4.2 Tumor invasion and metastasis\n 8.4.3 Unique glycosaminoglycans from marine invertebrates and their potential antitumor activity\n 8.4.4 Challenges and future prospects\n 8.4.5 Take-home message\n 8.5 Pharmacological targeting of proteoglycans and metalloproteinases: an emerging aspect in cancer treatment\n 8.5.1 Introduction\n 8.5.2 The importance of targeting at ECM level in tumor progression\n 8.5.3 Pharmacological targeting of proteoglycans\n 8.5.4 Pharmacological targeting of matrix metalloproteinases\n 8.5.5 Pharmacological targeting of PGs/MMPs at the proteasome level\n 8.5.6 Concluding remarks\n 8.5.7 Take-home message\n 8.6 Targeting syndecan shedding in cancer\n 8.6.1 Introduction\n 8.6.2 Syndecan sheddases\n 8.6.3 Tissue inhibitors of metalloproteinases\n 8.6.4 Syndecan shedding and cancer\n 8.6.5 Future prospects\n 8.6.6 Take-home message\n 8.7 PG receptors with phosphatase action in cancer and angiogenesis\n 8.7.1 Introduction\n 8.7.2 Glycosylated transmembrane protein phosphatase receptors\n 8.7.3 RPTP-β/ζ\n 8.7.4 Conclusions\n 8.7.5 Take-home message\n 8.8 Heparanase, a multifaceted protein involved in cancer, chronic inflammation, and kidney dysfunction\n 8.8.1 Introduction\n 8.8.2 Involvement of heparanase in cancer progression\n 8.8.3 Heparanase and inflammation\n 8.8.4 Heparanase and diabetic nephropathy\n 8.8.5 Challenges and future perspectives\n 8.8.6 Take-home message\n 8.9 Delivery systems targeting cancer at the level of ECM\n 8.9.1 Introduction\n 8.9.2 Targeting cancer\n 8.9.3 CD44-HA in tumor biology\n 8.9.4 Strategies that target CD44 to perturb HA-CD44 interaction in tumors\n 8.9.5 Take-home message\nIndex




پست ها تصادفی