توضیحاتی در مورد کتاب Fat Mimetics for Food Applications
نام کتاب : Fat Mimetics for Food Applications
ویرایش : 1
عنوان ترجمه شده به فارسی : تقلید چربی برای کاربردهای غذایی
سری :
نویسندگان : Miguel Cerqueira (editor), Lorenzo Castro (editor)
ناشر : Wiley
سال نشر : 2023
تعداد صفحات : 546
ISBN (شابک) : 1119780012 , 9781119780014
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 75 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Fat Mimetics for Food Applications
Contents
Foreword
List of Contributors
Preface
Acknowledgements
Editors
Section I Introduction to Fat Mimetics
1.1 Why Does the Food Industry Need Fat Mimetics?
1.1.1 The Role of Lipids in Foods and Human Nutrition
1.1.2 Current Status of Fats in the Food Industry
1.1.3 Food Trends and Fat Mimetics
1.2 Overview of the Structure-Property Relationship in Fat Mimetics
1.2.1 Introduction
1.2.2 Rheological Properties
1.2.3 Large Deformation Testing
1.2.4 Microstructure
1.2.5 Oil Binding Capacity
1.2.6 Conclusions and Next Steps
Section II Materials and Methods Used for the Production of Fat Mimetics
2.1 Natural Wax-Based Oleogels for Food Application
2.1.1 Introduction
2.1.2 Mechanism of Oleogelation
2.1.3 Bibliography Meta-Analysis
2.1.4 Natural Waxes
2.1.4.1 Candelilla Wax
2.1.4.1.1 Chemical Composition of CW
2.1.4.1.2 Physico-Chemical Properties of CW
2.1.4.2 Rice Bran Wax
2.1.4.2.1 Chemical Composition of RBW
2.1.4.2.2 Physico-Chemical Properties of RBW
2.1.4.3 Beeswax
2.1.4.3.1 Chemical Composition of BW
2.1.4.3.2 Physico-Chemical Properties of BW
2.1.5 Applications of the Natural Wax-Based Oleogels
2.1.5.1 Candelilla Wax
2.1.5.2 Rice Bran Wax
2.1.5.3 Beeswax
2.1.6 Conclusion
2.2 Phytosterols and Other Sterols
2.2.1 Introduction
2.2.2 γ-Oryzanol-Sterols System
2.2.2.1 Crystallites and Oil Gelation
2.2.2.2 γ-Oryzanol-Sterols Mechanism
2.2.2.3 Hydrates
2.2.3 Other Combinations Including Sterols
2.2.4 Perspective on the Industrial Applicability
2.2.5 Conclusion
2.3 Lecithin
2.3.1 Introduction
2.3.2 Lecithin Chemistry
2.3.2.1 Types and Composition
2.3.2.2 Technological Manufacture of Lecithin
2.3.2.3 Strategies of Lecithin Modification
2.3.2.3.1 Physical Modification
2.3.2.3.2 Enzymatic Modification
2.3.2.3.3 Chemical Modification
2.3.2.4 Lecithin Self-Assembly: Dependence of Solvent Medium
2.3.3 Exploring Techno-Functionalities of Lecithin
2.3.3.1 Conventional Fat: The Role of Lecithin as Crystallization Modifier in Lipid Systems
2.3.4 Application of Lecithin in Alternative Oil-Structuring Routes
2.3.4.1 Oleogels
2.3.4.2 Emulsion Strategies
2.3.5 Beyond Oil-Structuring Purposes: Role of Lecithin as an Emulsifier and in the Vehiculation of Bioactive Components
2.3.6 Food Applications
2.3.6.1 Margarines
2.3.6.2 Bakery Products
2.3.6.3 Chocolate
2.3.6.4 Dairy Products
2.3.7 Final Remarks and Perspectives
2.4 Mono‐ and Diglycerides
2.4.1 Introduction
2.4.2 Monoglycerides and Diglycerides
2.4.3 Fat Mimetics Based on Mono- and Diglycerides
2.4.3.1 Hydrogels
2.4.3.1.1 Effect of Compositional Factors
2.4.3.1.2 Effect of Processing Factors
2.4.3.2 Oleogels
2.4.3.2.1 Effect of Compositional Factors
2.4.3.2.2 Effect of Processing Factors
2.4.3.3 From Oleogels to Oleofoams
2.4.3.3.1 Effect of Compositional Factors
2.4.3.3.2 Effect of Processing Factors
2.4.3.4 Gelled Emulsions
2.4.3.4.1 Oil-in-Water Gelled Emulsions
2.4.3.4.2 Effect of Compositional Factors
2.4.3.4.3 Effect of Processing Factors
2.4.3.5 From O/W Gelled Emulsions to High Internal Phase Emulsions (HIPE)
2.4.3.6 Water-in-oil Gelled Emulsions
2.4.3.7 From W/O Gelled Emulsions to High Internal Phase Emulsions (HIPE)
2.4.4 Food Applications
2.4.5 Novel Functionalities of MG and DG Fat Mimetics
2.4.6 Conclusions
2.5 Oleogels Based on Fatty Acids and Fatty Alcohols
2.5.1 Introduction
2.5.2 Structure and Properties of Oleogel Based on Fatty Acids or Fatty Alcohols
2.5.2.1 Definition and Properties of Fatty Alcohol
2.5.2.2 Definition and Properties of Fatty Acids
2.5.2.3 Fatty Alcohols as Oleogelators
2.5.2.4 Fatty Acids as Oleogelators
2.5.3 Mixture of Fatty Acids and Fatty Alcohol to Improve Oleogel Properties
2.5.3.1 Effect of R on the Crystal Structure
2.5.3.2 Effect of R on the Microstructure of the Oleogels
2.5.3.3 Effect of R on the Thermal Behavior and Solid Fat Content of Oleogels
2.5.3.4 Effect of R on Oleogel Properties: Mechanical Strength and Stability
2.5.4 Oil Foams Based on Fatty Acids and Fatty Alcohols
2.5.4.1 Definition of Oil Foams Stabilized by Crystalline Particles
2.5.4.2 Oil Foams Based on Fatty Acids and Fatty Alcohols
2.5.4.3 Controlling Oil Foam Properties by Tuning the Ratio between Fatty Alcohol and Fatty Acids
2.5.4.4 Application of Oil Foams to Develop Food Products
2.5.5 Conclusion and Perspectives
2.6 Proteins as Fat Replacers in the Food Industry
2.6.1 Introduction
2.6.2 Fat Mimetics
2.6.3 Protein-Based Fat Mimetics
2.6.3.1 Animal Protein-Based Fat Replacers
2.6.3.1.1 Casein
2.6.3.1.2 Whey Protein
2.6.3.1.3 Microparticulated Whey Protein
2.6.3.1.4 Simplesse & Dairy-Lo
2.6.3.1.5 Egg White Protein
2.6.3.1.6 Plasma Protein
2.6.3.1.7 Collagen Protein
2.6.3.1.8 Gelatin Protein
2.6.3.2 Plant Protein-Based Fat Replacers
2.6.3.2.1 Soy Protein
2.6.3.2.2 Corn Zein Protein
2.6.3.2.3 Wheat Gluten Protein
2.6.3.2.4 Pea Protein
2.6.3.2.5 Lupin Protein
2.6.4 Properties of Protein-Based Fat Mimetics
2.6.5 Factors Affecting the Acceptability of Protein-Based Fat Mimetics
2.6.5.1 Sensory Attributes
2.6.5.2 Nutritional Properties
2.6.5.3 Hygienic Aspects
2.6.5.4 Cost
2.6.5.5 Health Aspects
2.6.5.6 Marketing
2.6.5.7 Convenience
2.6.5.8 Heat Stability
2.6.6 Applications of Protein-Based Fat Mimetics
2.6.6.1 Bakery Products
2.6.6.2 Chocolate and Confectionery Products
2.6.6.3 Dairy Products
2.6.6.4 Meat Products
2.6.6.5 Other Applications
2.6.7 Future of Protein-Based Fat Mimetics
2.7 Polysaccharide-Based Oleogels
2.7.1 Introduction
2.7.2 Direct Polymeric Structuring
2.7.2.1 Ethylcellulose
2.7.2.2 EC-Based Hybrid Oleogelation Systems
2.7.2.2.1 Monoacylglycerol
2.7.2.2.2 Stearyl Alcohol and Stearic Acid
2.7.2.2.3 Lauric Acid
2.7.2.2.4 Behenic Acid
2.7.2.2.5 Lecithin
2.7.2.2.6 EC/MAG Binary and Ternary Blends (Edible Shortenings)
2.7.2.3 EC-Based Oleogels in Food Applications and Nutrient Delivery
2.7.2.4 Chitin
2.7.3 Indirect Structuring
2.7.3.1 Emulsion-Templating
2.7.3.2 Aerogel-Templating
2.7.3.2.1 Foam-Templating
2.7.3.2.2 Supercritical CO2-Derived Templates
2.7.4 Conclusion
Section III Methodologies for the Characterisation of Fat Mimetics
3.1 Rheology and Texture Analysis
3.1.1 Introduction
3.1.2 Rheology Principles
3.1.2.1 Large Deformation Tests
3.1.2.1.1 Rheological Behavior/Viscosity Measurements
3.1.2.1.2 Time-Dependence
3.1.2.2 Small Deformation Tests
3.1.2.2.1 Transient Tests
3.1.2.2.2 Oscillatory Tests
3.1.3 Texture Principles
3.1.3.1 Fundamental Tests
3.1.3.1.1 Uniaxial Compression
3.1.3.2 Empiric Tests
3.1.3.2.1 Puncture
3.1.3.2.2 Spreadability
3.2 Application of Small-Angle X-Ray Scattering and Small-Angle Neutron Scattering to Fat Mimetics
3.2.1 Introduction
3.2.2 Fundamentals of Small-Angle Scattering
3.2.2.1 SAS Instrumentation
3.2.2.2 SAS Experiment and Data Collection
3.2.2.3 Data Analysis and Interpretation
3.2.3 Recent Experimental SAS and USAS Examples to Oleogels
3.2.3.1 Oleic Acid–Sodium Oleate
3.2.3.2 Natural Waxes
3.2.3.3 β-sitosterol (and Other Phytosterols) with γ-oryzanol
3.2.3.4 Lecithin
3.2.3.5 Mono‐, Di- and Triglycerides
3.2.3.6 Carbohydrate and Proteins
3.2.4 Conclusions and Outlook
3.3 Sensory Evaluation of Fat Reduction in Foods
3.3.1 Introduction
3.3.2 Generalities on Fat Replacement and Sensory Evaluation
3.3.3 Effect of Fat Replacement in Food Products
3.3.3.1 Cereal and Baking Products
3.3.3.2 Meat Products
3.3.3.3 Dairy Products
3.3.4 Conclusion and Final Considerations
3.4 Gastrointestinal Fate of Lipid-Based Formulations as Fat Mimetics
3.4.1 Introduction
3.4.2 Lipid Digestion
3.4.2.1 In Vitro Models
3.4.2.2 Factors Affecting Lipid Digestion
3.4.3 Conclusion
3.5 Nutritional and Functional Properties of Fat Mimetics
3.5.1 Introduction
3.5.2 Emerging Fat Mimetics
3.5.2.1 Oleogels
3.5.2.2 Templated Oleogels
3.5.2.3 Emulsion Gels
3.5.2.4 Structured Emulsions
3.5.3 Multifunctionality of Fat Mimetics in Food Applications
3.5.3.1 Replacement of Saturated Fats
3.5.3.2 Reducing Energy Intake in Diets
3.5.3.3 In Vitro and In Vivo Digestion
3.5.3.4 Controlled Delivery Carriers and Release of Bioactive Molecules
3.4.3.5 Texture Design and Modification
3.5.3.5 Reduction in Lipid Oxidation
3.5.4 Conclusion and Outlook
Section IV Food Applications
4.1 Processed Meat Products
4.1.1 Introduction
4.1.2 Definition and Classification
4.1.3 Type of Fat Mimetics
4.1.3.1 Carbohydrate-Based Fat Mimetics
4.1.3.1.1 Starch and Starch Derivatives-Based Fat Mimetics
4.1.3.1.2 Cellulose-Based Fat Mimetics
4.1.3.1.3 Dietary Fiber-Based Fat Mimetics
4.1.3.1.4 Gelling and Bulking Agent-Based Fat Mimetics
4.1.3.1.5 Gum-based Fat Mimetics
4.1.3.2 Protein-Based Fat Mimetics
4.1.3.3 Fat-Based Fat Mimetics
4.1.4 Conclusion
4.2 Fat Mimetics in Dairy Products
4.2.1 Introduction
4.2.2 The Characteristics of Milk Fat
4.2.3 The Role of Milk Fat in Dairy Products
4.2.3.1 Milk Fat and Dairy Product’s Sensory Characteristics
4.2.3.2 Milk Fat and Dairy Products Texture
4.2.3.3 Milk Fat and Dairy Products Melting Properties
4.2.4 Issues with Low-Fat Dairy Products
4.2.5 Fat Mimetics in Dairy Products
4.2.5.1 Carbohydrate-Based Fat Mimetics
4.2.5.2 Protein-Based Fat Mimetics
4.2.5.3 Lipid-Based Fat Mimetics
4.2.5.3.1 Oleogels as a Possible Fat Mimetics
4.2.6 Applications of Fat Mimetics in Different Dairy Products
4.2.6.1 Cheese
4.2.6.2 Ice Cream
4.2.6.3 Yogurt
4.2.6.4 Dairy Dessert and Beverages
4.2.7 Conclusion
4.3 Margarine and Fat Spreads
4.3.1 Introduction
4.3.1.1 Definitions and Legislation
4.3.1.2 Microstructure
4.3.1.3 Formulation
4.3.1.4 Processing
4.3.1.5 Properties
4.3.2 Alternative Structuring Approaches for Margarines and Fat Spreads
4.3.2.1 Stabilization Mechanisms
4.3.2.2 Network Stabilization – Continuous Phase
4.3.2.2.1 Waxes
4.3.2.2.2 Mono- and Diglycerides
4.3.2.2.3 Ethylcellulose
4.3.2.2.4 Phytosterols
4.3.2.2.5 Lecithin
4.3.2.3 Network Stabilization–Dispersed Phase
4.3.2.4 Bigels
4.3.3 Conclusion
4.4 Baked Products
4.4.1 Introduction
4.4.2 Fat Mimetics in Bakery Products
4.4.2.1 Fat Mimetics in Bread Formulation
4.4.2.2 Fat Mimetics in Cookie/Biscuit Formulation
4.4.2.3 Fat Mimetics in Cake/Muffin Formulation
4.4.3 Conclusion
Section V Industrial Perspective
5. 1 Molecular Gels–Barriers, Advances, and Opportunities
5.1.1 Introduction
5.1.2 Reliance Serendipitous Discovery
5.1.3 Solvent Confluence on Gelation Outcome
5.1.3.1 Dissecting Gelator and Solvent Molecular Features that Drive Self-Assembly–A Step Toward Rational Design
5.1.3.2 Solvent Complexity of Edible Oils–An Opportunity for Advancement
5.1.4 Emerging Low Molecular Mass Organogelating Technologies
5.1.4.1 Peptide Gelators
5.1.4.2 Sugar Gelators
5.1.4.3 Lipids Gelators
5.1.4.4 Mixed System Gelators
5.1.5 Polymeric Gelation
5.1.5.1 Emerging Polymeric Organogelating Technologies
5.1.6 Conclusion
5.2 Research and Development Toward the Commercialization of Fat Mimetics
5.2.1 Introduction
5.2.2 Research & Development in Fat Mimetics
5.2.3 Patents and Commercial Products
5.2.4 Conclusion
Index
EULA