Fiber Optic Communications

دانلود کتاب Fiber Optic Communications

31000 تومان موجود

کتاب ارتباطات فیبر نوری نسخه زبان اصلی

دانلود کتاب ارتباطات فیبر نوری بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 8


توضیحاتی در مورد کتاب Fiber Optic Communications

نام کتاب : Fiber Optic Communications
ویرایش : 1st ed. 2021
عنوان ترجمه شده به فارسی : ارتباطات فیبر نوری
سری :
نویسندگان :
ناشر : Springer
سال نشر : 2021
تعداد صفحات : 654
ISBN (شابک) : 9813346647 , 9789813346642
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 22 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Preface
Use of This Book
Acknowledgements
Contents
About the Author
1 Perspectives on Lightwave Communications
1.1 Reasons for Fiber Optic Communications
1.1.1 The Road to Optical Networks
1.1.2 Benefits of Using Optical Fibers
1.2 Optical Wavelength Bands
1.2.1 Electromagnetic Energy Spectrum
1.2.2 Optical Windows and Spectral Bands
1.3 Decibel Notation
1.4 Digital Multiplexing Techniques
1.4.1 Basic Telecom Signal Multiplexing
1.4.2 Multiplexing Hierarchy in SONET/SDH
1.4.3 Optical Transport Network (OTN)
1.5 Multiplexing of Wavelength Channels
1.5.1 Basis of WDM
1.5.2 Polarization Division Multiplexing
1.5.3 Optical Fibers with Multiple Cores
1.6 Basic Elements of Optical Fiber Systems
1.7 Evolution of Fiber Optic Networks
1.8 Standards for Fiber Optic Communications
1.9 Summary
References
2 Optical Fiber Structures and Light Guiding Principles
2.1 The Nature of Light
2.1.1 Polarization
2.1.2 Linear Polarization
2.1.3 Elliptical Polarization and Circular Polarization
2.1.4 Quantum Aspects of Light
2.2 Basic Laws and Definitions of Optics
2.2.1 Concept of Refractive Index
2.2.2 Basis of Reflection and Refraction
2.2.3 Polarization Characteristics of Light
2.2.4 Polarization-Sensitive Devices
2.3 Optical Fiber Configurations and Modes
2.3.1 Conventional Fiber Types
2.3.2 Concepts of Rays and Modes
2.3.3 Structure of Step-Index Fibers
2.3.4 Ray Optics Representation
2.3.5 Lightwaves in a Dielectric Slab Waveguide
2.4 Modes in Circular Waveguides
2.4.1 Basic Modal Concepts
2.4.2 Cutoff Wavelength and V Number
2.4.3 Optical Power in Step-Index Fibers
2.4.4 Linearly Polarized Modes
2.5 Single-Mode Fibers
2.5.1 SMF Construction
2.5.2 Definition of Mode–Field Diameter
2.5.3 Origin of Birefringence
2.5.4 Effective Refractive Index
2.6 Graded-Index (GI) Fibers
2.6.1 Core Structure of GI Fibers
2.6.2 GI Fiber Numerical Aperture
2.6.3 Cutoff Condition in GI Fibers
2.7 Optical Fiber Materials
2.7.1 Glass Optical Fibers
2.7.2 Standard Fiber Fabrication
2.7.3 Active Glass Optical Fibers
2.7.4 Plastic Optical Fibers
2.8 Photonic Crystal Fiber Concepts
2.8.1 Index-Guiding PCF
2.8.2 Photonic Bandgap Fiber
2.9 Optical Fiber Cables
2.9.1 Fiber Optic Cable Structures
2.9.2 Designs of Indoor Optical Cables
2.9.3 Designs of Outdoor Optical Cables
2.10 Summary
Appendix: The Fresnel Equations
References
3 Optical Signal Attenuation and Dispersion
3.1 Fiber Attenuation
3.1.1 Units for Fiber Attenuation
3.1.2 Absorption of Optical Power
3.1.3 Scattering Losses in Optical Fibers
3.1.4 Fiber Bending Losses
3.1.5 Core and Cladding Propagation Losses
3.2 Optical Signal Dispersion Effects
3.2.1 Origins of Signal Dispersion
3.2.2 Modal Delay Effects
3.2.3 Factors Contributing to Dispersion
3.2.4 Group Delay Results
3.2.5 Material-Induced Dispersion
3.2.6 Effects of Waveguide Dispersion
3.2.7 Dispersion Behavior in Single-Mode Fibers
3.2.8 Origin of Polarization-Mode Dispersion
3.3 Design and Characteristics of SMFs
3.3.1 Tailoring of Refractive Index Profiles
3.3.2 Concept of Cutoff Wavelength
3.3.3 Standards for Dispersion Calculations
3.3.4 Definition of Mode-Field Diameter
3.3.5 Bending Loss in Single-Mode Fibers
3.4 ITU-T Standards for Fibers
3.4.1 Recommendation G.651.1
3.4.2 Recommendation G.652
3.4.3 Recommendation G.653
3.4.4 Recommendation G.654
3.4.5 Recommendation G.655
3.4.6 Recommendation G.656
3.4.7 Recommendation G.657
3.5 Designs and Use of Specialty Fibers
3.6 Character of Multicore Optical Fibers
3.7 Summary
References
4 Light Sources for Fiber Links
4.1 Basic Concepts of Semiconductor Physics
4.1.1 Semiconductor Energy Bands
4.1.2 Intrinsic and Extrinsic Materials
4.1.3 Concept of a pn Junction
4.1.4 Direct Bandgap and Indirect Bandgap
4.1.5 Fabrication of Semiconductor Devices
4.2 Principles of Light-Emitting Diodes (LEDs)
4.2.1 LED Structures
4.2.2 Semiconductor Materials for Light Sources
4.2.3 LED Quantum Efficiency and Output Power
4.2.4 Response Time of an LED
4.3 Principles of Laser Diodes
4.3.1 Modes and Threshold Conditions in Laser Diodes
4.3.2 Laser Diode Rate Equations
4.3.3 External Differential Quantum Efficiency
4.3.4 Laser Resonant Frequencies
4.3.5 Structures and Radiation Patterns of Laser Diodes
4.3.6 Lasers Operating in a Single Mode
4.3.7 Modulation of Laser Diodes
4.3.8 Laser Output Spectral Width
4.3.9 External Laser Light Modulation
4.3.10 Lasing Threshold Temperature Effects
4.4 Output Linearity of Light Sources
4.5 Summary
References
5 Optical Power Coupling
5.1 Source-to-Fiber Power Coupling
5.1.1 Light Source Emission Patterns
5.1.2 Calculation of Power Coupling
5.1.3 Optical Coupling Versus Wavelength
5.1.4 Equilibrium Numerical Aperture
5.2 Coupling Improvement with Lensing Schemes
5.3 Losses Between Fiber Joints
5.3.1 Mechanical Misalignment Effects
5.3.2 Fiber Variation Losses
5.3.3 Single-Mode Fiber Losses
5.3.4 Preparation of Fiber End Faces
5.4 Summary
References
6 Photodetection Devices
6.1 Operation of Photodiodes
6.1.1 The pin Photodetector
6.1.2 Basics of Avalanche Photodiodes
6.2 Noise Effects in Photodetectors
6.2.1 Signal-to-Noise Ratio
6.2.2 Sources of Photodetector Noise
6.2.3 Signal-to-Noise Ratio Limits
6.2.4 Noise-Equivalent Power and Detectivity
6.3 Response Times of Photodiodes
6.3.1 Photocurrent in the Depletion Layer
6.3.2 Response Time Characteristics
6.4 Comparisons of Photodetectors
6.5 Summary
References
7 Optical Receiver Operation
7.1 Basic Receiver Operation
7.1.1 Transmitting Digital Signals
7.1.2 Sources of Detection Errors
7.1.3 Receiver Front-End Amplifiers
7.2 Performance Characteristics of Digital Receivers
7.2.1 Determining Probability of Error
7.2.2 Specifying Receiver Sensitivity
7.2.3 The Basic Quantum Limit
7.3 Principles of Eye Diagrams
7.3.1 Features of Eye Patterns
7.3.2 BER and Q-Factor Measurements
7.4 Burst-Mode Receivers
7.5 Characteristics of Analog Receivers
7.6 Summary
References
8 Digital Optical Fiber Links
8.1 Basic Optical Fiber Links
8.1.1 Signal Formats for Transporting Information
8.1.2 Considerations for Designing Links
8.1.3 Creating a Link Power Budget
8.1.4 Formulating a Rise-Time Budget
8.1.5 Transmission at Short Wavelengths
8.1.6 Attenuation Limits for SMF Links
8.2 Concepts of Link Power Penalties
8.2.1 Power Penalties from Chromatic Dispersion
8.2.2 Power Penalties Arising from PMD
8.2.3 Extinction Ratio Power Penalties
8.2.4 Modal Noise Power Penalties
8.2.5 Power Penalties Due to Mode-Partition Noise
8.2.6 Chirping-Induced Power Penalties
8.2.7 Link Instabilities from Reflection Noise
8.3 Detection and Control of Errors
8.3.1 Concept of Error Detection
8.3.2 Codes Used for Linear Error Detection
8.3.3 Error Detection with Polynomial Codes
8.3.4 Using Redundant Bits for Error Correction
8.4 Coherent Detection Schemes
8.4.1 Fundamental Concepts
8.4.2 Homodyne Detection
8.4.3 Heterodyne Detection
8.4.4 SNR in Coherent Detection
8.4.5 BER Comparisons in Coherent Detection
8.5 Higher-Order Signal Modulation Formats
8.5.1 Concept of Spectral Efficiency
8.5.2 Phase Shift Keying or IQ Modulation
8.5.3 Differential Quadrature Phase-Shift Keying
8.5.4 Quadrature Amplitude Modulation (QAM)
8.6 Summary
References
9 Analog Optical Fiber Channels
9.1 Basic Elements of Analog Links
9.2 Concept of Carrier-to-Noise Ratio
9.2.1 Carrier Power
9.2.2 Photodetector and Preamplifier Noises
9.2.3 Effects of Relative Intensity Noise (RIN)
9.2.4 Limiting C/N Conditions
9.3 Multichannel Amplitude Modulation
9.4 Spurious-Free Dynamic Range
9.5 Radio-Over-Fiber Links
9.6 Microwave Photonics
9.7 Summary
References
10 Wavelength Division Multiplexing (WDM)
10.1 Concepts of WDM
10.1.1 WDM Operational Principles
10.1.2 Standards for WDM
10.2 Passive Optical Couplers
10.2.1 The 2 × 2 Fiber Coupler
10.2.2 Scattering Matrix Analyses of Couplers
10.2.3 Basis of the 2 × 2 Waveguide Coupler
10.2.4 Principal Role of Star Couplers
10.2.5 Mach–Zehnder Interferometry Techniques
10.3 Nonreciprocal Isolators and Circulators
10.3.1 Functions of Optical Isolators
10.3.2 Characteristics of Optical Circulators
10.4 WDM Devices Based on Grating Principles
10.4.1 Grating Basics
10.4.2 Optical Fiber Bragg Grating (FBG)
10.4.3 WDM FBG Applications
10.5 Dielectric Thin-Film Filter (TFF)
10.5.1 Applications of Etalon Theory
10.5.2 TFF Applications to WDM Links
10.6 Arrayed Waveguide Devices
10.7 WDM Applications of Diffraction Gratings
10.8 Summary
References
11 Basics of Optical Amplifiers
11.1 Fundamental Optical Amplifier Types
11.1.1 General Applications of Optical Amplifiers
11.1.2 Amplifier Classifications
11.2 Semiconductor Optical Amplifiers
11.2.1 External Pumping of Active Medium
11.2.2 Amplifier Signal Gain
11.2.3 SOA Bandwidth
11.3 Erbium-Doped Fiber Amplifiers
11.3.1 Basics of Fiber Amplifier Pumping
11.3.2 Construction of an EDFA
11.3.3 EDFA Power-Conversion Efficiency and Gain
11.4 Noises Generated in Optical Amplifiers
11.5 Optical Signal-To-Noise Ratio (OSNR)
11.6 Fiber Link Applications
11.6.1 Power Amplifier Functions
11.6.2 Use of In-Line Amplifiers
11.6.3 Optical Amplifier as a Preamplifier
11.7 Raman Optical Amplifiers
11.7.1 Principle of Raman Gain
11.7.2 Pump Lasers for Raman Amplifiers
11.8 Multiband Optical Amplifiers
11.9 Overview of Optical Fiber Lasers
11.10 Summary
References
12 Nonlinear Processes in Optical Fibers
12.1 Classifications of Nonlinearities
12.2 Effective Length and Effective Area
12.3 Stimulated Raman Scattering
12.4 Stimulated Brillouin Scattering
12.5 Self-Phase Modulation
12.6 Cross-Phase Modulation in WDM Systems
12.7 Four-Wave Mixing in WDM Channels
12.8 Mitigation Schemes for FWM
12.9 Basic Optical Wavelength Converters
12.9.1 Wavelength Converters Using Optical Gatings
12.9.2 Wavelength Converters Based on Wave-Mixing
12.10 Principles of Solitons
12.10.1 Structures of Soliton Pulses
12.10.2 Fundamental Parameters for Solitons
12.10.3 Width and Spacing of Soliton Pulses
12.11 Summary
References
13 Fiber Optic Communication Networks
13.1 Concepts of Optical Networks
13.1.1 Terminology Used for Networks
13.1.2 Generic Network Categories
13.1.3 Layered Structure Approach to Network Architectures
13.1.4 Optical Layer Functions
13.2 Common Network Topologies
13.2.1 Performance of Passive Linear Buses
13.2.2 Performance of Star Networks
13.3 Basic SONET/SDH Concepts
13.3.1 SONET/SDH Frame Formats and Speeds
13.3.2 Optical Interfaces in SONET/SDH
13.3.3 SONET/SDH Rings
13.3.4 SONET/SDH Network Architectures
13.4 High-Speed Lightwave Transceivers
13.4.1 Links Operating at 10 Gb/s
13.4.2 Transceivers for 40 Gb/s Links
13.4.3 Transceivers for 100 Gb/s Links
13.4.4 Links Operating at 400 Gb/s and Higher
13.5 Schemes for Optical Add/Drop Multiplexing
13.5.1 Configurations of OADM Equipment
13.5.2 Reconfiguring OADM Equipment
13.6 Optical Switching Architectures
13.6.1 Concept of an Optical Crossconnect
13.6.2 Considerations for Wavelength Conversion
13.6.3 Methodologies for Wavelength Routing
13.6.4 Optical Packet Switching
13.6.5 Optical Burst Switching
13.6.6 Elastic Optical Networks
13.7 WDM Network Implementations
13.7.1 Long-Distance WDM Networks
13.7.2 Metro WDM Networks
13.7.3 Data Center Networks
13.8 Passive Optical Networks
13.8.1 Basic Architectures for PONs
13.8.2 Active PON Modules
13.8.3 Controlling PON Traffic Flows
13.8.4 Protection Switching for PON Configurations
13.8.5 WDM PON Architectures
13.9 Summary
References
14 Basic Measurement and Monitoring Techniques
14.1 Overview of Measurement Standards
14.2 Survey of Test Equipment
14.2.1 Lasers Used for Test Support
14.2.2 Optical Spectrum Analyzer
14.2.3 Multipurpose Test Equipment
14.2.4 Optical Attenuators
14.2.5 OTN Tester for Performance Verification
14.2.6 Visual Fault Indicator
14.3 Optical Power Measurement Methods
14.3.1 Physical Basis of Optical Power
14.3.2 Optical Power Meters
14.4 Characterization of Optical Fibers
14.4.1 Refracted Near-Field Method
14.4.2 Transmitted Near-Field Technique
14.4.3 Optical Fiber Attenuation Measurements
14.5 Concept of Eye Diagram Tests
14.5.1 Standard Mask Testing
14.5.2 Stressed Eye Opening
14.5.3 BER Contours
14.6 Optical Time-Domain Reflectometer
14.6.1 OTDR Trace Characterization
14.6.2 Attenuation Measurements with an OTDR
14.6.3 OTDR Dead Zone
14.6.4 Locating Fiber Faults
14.6.5 Measuring Optical Return Loss
14.7 Optical Performance Monitoring
14.7.1 Network Management Systems and Functions
14.7.2 Optical Layer Management
14.7.3 Fundamental OPM Function
14.7.4 OPM Architecture for Network Maintenance
14.7.5 Detecting Network Faults
14.8 Optical Fiber Network Performance Testing
14.8.1 BER Measurements
14.8.2 OSNR Measurements
14.8.3 Q Factor Estimation
14.8.4 OMA Measurement Method
14.8.5 Measurement of Timing Jitter
14.9 Summary
References
Appendix A International Units and Physical Constants
Appendix B Decibels
B.1 Definition
B.2 The dBm
B.3 The Neper
Appendix C Acronyms
Appendix D List of Important Roman Symbols
Appendix E List of Important Greek Symbols




پست ها تصادفی