توضیحاتی در مورد کتاب Food industry wastes: assessment and recuperation of commodities
نام کتاب : Food industry wastes: assessment and recuperation of commodities
ویرایش : 1
عنوان ترجمه شده به فارسی : ضایعات صنایع غذایی: ارزیابی و بازیابی کالاها
سری : Food science and technology international series
نویسندگان : Maria Kosseva, Colin Webb
ناشر : Academic Press
سال نشر : 2013
تعداد صفحات : 339
ISBN (شابک) : 0123919215 , 9780123919212
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 16 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
ضایعات صنایع غذایی: ارزیابی و بازیابی کالاها تکنیکها و فرصتهای نوظهور را برای درمان ضایعات غذایی، کاهش ردپای آب و ایجاد سیستمهای غذایی پایدار ارائه میدهد. این کتاب که توسط تیمی از کارشناسان از سراسر جهان نوشته شده است، منبعی کلیدی برای اجرای فرآیندها و همچنین به محققان نقطه شروعی برای توسعه گزینههای جدید برای بازیابی این زبالهها به نفع جامعه میدهد. بیش از 34 میلیون تن ضایعات غذایی تنها در ایالات متحده در سال 2009 تولید شد - با هزینه ای حدود 43 میلیارد دلار. و در حالی که کمتر از 3 درصد از این زباله ها بازیافت و بازیافت شد، علاقه و توسعه روزافزونی برای یافتن راه هایی برای استفاده از این زباله ها به روش هایی وجود دارد که نه تنها گازهای گلخانه ای را کاهش می دهد، بلکه انرژی را تامین می کند و به طور بالقوه منابعی را برای اهداف دیگر فراهم می کند. زباله منطقه ای است که برای طیف گسترده ای از صنایع مرتبط از علوم غذایی گرفته تا انرژی و مهندسی مورد توجه قرار می گیرد. این تیم نویسندگی بین المللی نشان دهنده برتری در تحقیق و توسعه است.
فهرست مطالب :
Front Cover......Page 1
Food Industry Wastes......Page 4
Copyright Page......Page 5
Dedication......Page 6
Contents......Page 8
Contributors......Page 12
Preface......Page 14
1 Sustainability of the Food Supply Chain......Page 16
2 Quantity of Food Wastes......Page 18
5 Conclusions......Page 22
References......Page 25
Abbreviations and Glossary......Page 26
I: Food Industry Wastes: Problems and Opportunities......Page 28
1.1 Definitions of Food Industry Waste (FIW)......Page 30
2 Various Legal Aspects of Food Waste......Page 31
2.1 Selecting Best Available Technique Candidates for the Food and Drink Sector......Page 32
3.1 Adoption of a “Recycling Society” in the EU......Page 33
3.2 Main Stipulations of the Landfill Directive 1999/31/EC......Page 34
German Case Study......Page 35
3.3 European Waste Framework Directive (WFD)......Page 36
4.1.1 Introduction of New Regulations and the Right Policies......Page 37
4.3 Example of Application of Waste Management Legislation in Ireland......Page 38
5 Policy Recommendations Identified for Their Prevention Potential......Page 39
7 Conclusions......Page 40
References......Page 41
2.1 History and Definitions of Industrial Ecology......Page 44
2.2.1 Ecosystems as Self-Organizing Systems......Page 45
2.4.1 A Conceptual Model of Industrial Ecology......Page 46
2.5.3 Using Appropriate Biotechnology......Page 47
3.1 Constraints and Incentives for Industrial Ecology......Page 48
3.2 Eco-Innovation as a Driver of Sustainable Manufacturing......Page 49
5.1 Principles of Green Production......Page 50
5.2 Green Production Criteria......Page 51
7 Holistic Approach in Food Production......Page 52
7.2 The Upgrading Concept......Page 53
8 The Green Biorefinery Concept......Page 54
9 Anaerobic Digestion and Biogas Production Technology......Page 55
10 Energy Generated by Food and Farm Co-Digestion......Page 56
The Energy Embedded in Food Waste in the USA......Page 57
The Energy Estimated in UK Retail and Household Food Waste in 2008......Page 60
References......Page 62
1.1 Sources of Food Wastes......Page 64
1.1.2 Retailer Wastes......Page 65
2.1 Fruit-and-Vegetable Wastes......Page 66
2.1.1.3 Citrus Pomace......Page 68
2.1.2.2 Potato Co-Products......Page 69
2.3 Fermentation Industry Wastes......Page 70
2.3.1 Quantities of Bioethanol Production......Page 71
2.3.2.2 Starch-Based Feedstock......Page 72
2.5.1 Meat Production Waste......Page 75
2.6 Seafood By-Products......Page 79
2.6.1 Chemical Composition of Fish Waste......Page 80
BOD......Page 81
Gas Chromatography (GC)......Page 82
References......Page 83
II: Treatment of Solid Food Wastes......Page 88
2 Bread as a Major Dietary Staple......Page 90
2.1.2 Spoilage of Bread......Page 91
3.1 Estimated Wastage......Page 92
4 Utilization of Bread and Bakery Wastes......Page 93
4.1 Conceptualizing How Best to Utilize Waste Bread......Page 95
5 Solid-State Fermentation of Bread Waste......Page 96
5.1 Optimum Particle Size......Page 97
5.3 Optimum Duration for Solid-State Fermentation......Page 98
5.3.5 Termination of the Fermentation......Page 99
6 Process Development Opportunities......Page 100
References......Page 101
1.1 Economically and Industrially Important Advantages of SSF......Page 104
1.2 Comparison of SSF and SmF......Page 105
2 Selection of Bioreactor Design for SSF......Page 106
2.2 Group 1: SSF Bioreactors without Forced Aeration (Tray Bioreactors)......Page 107
2.3.1 Key Considerations in Designing Packed Beds......Page 108
2.4 Group 3: Continuously Agitated SSF Bioreactors with Air Circulation (Rotating and Stirred Drums)......Page 109
2.4.2 Intermittently Mixed Bed Bioreactors with Forced Aeration (Mixed and Aerated)......Page 110
2.5 Group 4: Bioreactors with Both Continuous Mixing and Forced Aeration (Mixed with Forced Aeration)......Page 111
2.6 Examples of SSF Bioreactor Applications......Page 112
3.2.2 Heat Transfer Aspects......Page 113
4.1 Bulk Chemicals and Products: Organic Acids, Ethanol, Enzymes, Polysaccharides, and Feed Protein......Page 114
4.1.1.1 Lactic Acid Production......Page 116
4.1.3 Production of Enzymes......Page 118
4.1.3.1 α-Amylase......Page 119
4.1.3.3 Protease......Page 120
4.1.3.4 Laccase......Page 121
4.1.5 Production of Baker’s Yeast......Page 122
4.2.2 Antibiotics......Page 123
4.2.3 Production of Pigments......Page 124
5 Conclusions......Page 125
References......Page 126
1.1 Definition of Nutraceuticals and Functional Food......Page 130
2.1 Flavonoids......Page 131
2. 2. 2 Resveratrol......Page 133
3.2 Flavonols of Onions......Page 134
3. 3. 1 Prevention of Atherosclerosis and Cardiovascular Disease......Page 135
3. 3. 4 Hormonal Activity......Page 136
5 Dietary Fibers......Page 137
6.2 Methods of Processing......Page 138
7.3 Extraction of Antioxidants from Potato Peels by Pressurized Liquids......Page 139
7.4 Extraction of Phytochemicals from Common Vegetables......Page 140
8.2.2 Regulation of the Immune System......Page 141
8.2.6 Growth Factor Activity......Page 142
10 Conclusions......Page 143
References......Page 144
2.1.1 Disintegration and Hydrolysis......Page 148
2.1.2 Acidogenesis......Page 149
2.1.4 Methanogenesis......Page 150
2.3.1 Temperature......Page 151
3.1.1 Continuously Stirred Tank Reactor (CSTR)......Page 152
3.2.1 UASB System......Page 153
3.3.1 Hydrogen–Methane Two-Stage Fermentation System (Hy–Met Process)......Page 155
3.3.1.2 Application to Bread Manufacturing Wastes......Page 156
4 Fertilization of Residues After Anaerobic Digestion......Page 157
5 Conclusion......Page 158
References......Page 159
III: Improved Biocatalysts and Innovative Bioreactors for Enhanced Bioprocessing of Liquid Food Wastes......Page 162
1 Introduction......Page 164
2.2 Adsorption, Gel Entrapment, and Covalent-Binding......Page 165
2.3.1 Emulsion/Interfacial Polymerization......Page 166
2.4.2 Multi-Subunit Immobilization......Page 167
2.4.3 Chemical Modifications......Page 168
3.1 Lactose Hydrolysis......Page 169
4.1 Ethanol Production......Page 171
4.2 Lactic Acid Production......Page 173
5.1 Packed-Bed Reactors (PBRs)......Page 175
6 Kinetic Performance of the Immobilized Cells (IMCs)......Page 176
6.2 Mass Transfer Considerations and the Observed Reaction Rate in an IMC System......Page 177
Case Study 1: Lactic Acid Production from Lactose by Immobilized Lactobacillus Casei Cells......Page 178
8.1 Lactose Hydrolysis with Immobilized β-Galactosidase......Page 179
9 Conclusions......Page 180
References......Page 181
2 Basic Principle of Dark Hydrogen Fermentation......Page 184
2.1 Hydrogen Production by Strict Anaerobes......Page 185
2.2 Hydrogen Production by Facultative Anaerobes......Page 186
3 Effect of Intracellular and Extracellular Redox States on Hydrogen Production......Page 188
4 Bioreactor System for High-Rate Hydrogen Production......Page 189
5.1 Carbohydrates......Page 190
6 Treatment of Effluent After Dark Hydrogen Fermentation......Page 192
6.2 Photobiological Hydrogen Fermentation......Page 193
References......Page 195
1 Introduction......Page 198
2 Thermophilic Aerobic Digestion......Page 199
3 Thermophilic Microorganisms......Page 200
4.1 Target Wastes......Page 201
4.1.1 Bioconversion of Cheese Whey......Page 202
4.1.1.1 Strategy 1 Experiment......Page 203
4.1.1.2 Strategy 2 Experiments......Page 204
Effect of PH and Temperature on the Efficiency of the Bioremediation of Stilton Whey......Page 205
4.1.1.3 Investigations Into Reduction of Chemical Oxygen Demand During a One-Stage Process......Page 206
4.1.2 Bioconversion of Grain Stillage/Distiller’s Slops......Page 207
4.1.3 Bioconversion of Potato Stillage/Distiller’s Slops......Page 208
4.1.4 Bioconversion of Potato Starch Production Wastes......Page 209
4.1.5 Bioconversion of Wheat Stillage......Page 210
5.2 Bioreactor Concept and Description......Page 211
5.3 Bioreactor Performance......Page 212
6 Feed Production From Food Industry Wastes......Page 213
7 Conclusions......Page 214
References......Page 215
2 Mathematical Models of Bioreactors and Biodegradation Processes......Page 218
2.1.1 Approach I......Page 219
2.1.2 Approach II......Page 221
2.2 Modeling of the Biodegradation of Potato Stillage/ Distiller’s Slops......Page 222
2.2.3 Comparison of Model Output and Experimental Data......Page 224
2.3.1.1 Model Assumptions......Page 225
2.3.1.2 Main Reactions Assumed in the Model......Page 226
2.4 Modeling of an Autothermal Thermophilic Aerobic Digester (ATAD)......Page 229
2.4.2 Energy Balance......Page 230
2.5.1 Steady-State Models of WWTPs......Page 232
3 Process Analytical Technology......Page 233
4 Control Strategy Development......Page 235
4.1 Fuzzy Logic Control......Page 236
4.2.2 Physiological State Classification Strategies......Page 237
5 Conclusions......Page 238
References......Page 239
IV: Assessment of Water and Carbon Footprints and Rehabilitation of Food Industry Wastewater......Page 242
1 Background......Page 244
2 Defining Water Footprints......Page 245
2.1 Defining Carbon Footprints......Page 247
3 Accounting Carbon Footprint......Page 249
4 Data......Page 250
5 Results of Water Footprint Accounting......Page 251
6 Results of Carbon Footprint Accounting......Page 253
Case A: Wheat......Page 254
Case B: Tomato......Page 255
Case C: Beef......Page 256
8 Discussion and Conclusion......Page 257
References......Page 262
3 Microbial Fuel Cells......Page 264
3.1 What is Special about Electrochemical Energy Conversion?......Page 265
3.2 Working Principle of MFCs......Page 266
Losses Due to Activation Overpotential......Page 267
3.4 Electrochemical Techniques Generally Used in MFC Studies......Page 268
3.4.2 Electrode Polarization Techniques......Page 269
3.4.5 Cyclic Voltammetry......Page 270
3.6.1 Evolution of MFC Configurations and Designs......Page 271
4 Microbial Fuel Cells and Wineries—A Case Study......Page 272
5 Conclusions......Page 273
References......Page 274
1 Introduction......Page 276
2 Current Status of Electricity Generation from Food Industry Wastewaters......Page 277
3.1 Wastewater Properties......Page 279
3.2 Anodic Microbiology......Page 280
3.3 Reactor Design Parameters......Page 281
4 Electricity Generation from a Scalable MFC—a Case Study......Page 283
4.2 Power Generation Performance......Page 284
5 Conclusion......Page 285
References......Page 286
V: Assessment of Environmental Impact of Food Production and Consumption......Page 290
1 Introduction......Page 292
2 Methodology in Life Cycle Assessment......Page 293
3 Utility of Lct/Lca to Promote Lower-Impact Habits in Consumers......Page 295
4.1 Bioethanol......Page 296
4.2 Biodiesel......Page 297
4.4 Compost......Page 298
4.5 Other proposals......Page 299
5.2 Recovery of Combustion Energy......Page 300
5.3 Additional Recovery Proposals......Page 301
6 Conclusions......Page 302
7 Case Study: Lca of Waste Management in Cider Making......Page 303
References......Page 306
1 Introduction......Page 308
2 Food Supply Chain and Waste......Page 309
3 Consumer Behavior and Behavioral Change......Page 311
4 New Product Development and Innovation......Page 314
5 Conclusions......Page 317
References......Page 318
1.1 EU Measures to Reduce Food Industry Waste......Page 322
2.2 Sustainability and Eco-Innovation......Page 324
3 Valorization of Food Industry Waste......Page 325
3.2 Thermophilic Aerobic Bioremediation......Page 326
3.5 Progress in Immobilization of Enzymes......Page 327
4 Conclusions......Page 328
References......Page 329
Food Science and Technology International Series......Page 332
Index......Page 334
توضیحاتی در مورد کتاب به زبان اصلی :
Food Industry Wastes: Assessment and Recuperation of Commodities presents emerging techniques and opportunities for the treatment of food wastes, the reduction of water footprint, and creating sustainable food systems. Written by a team of experts from around the world, this book will provide a key resource for implementing processes as well as giving researchers a starting point for the development of new options for the recuperation of these waste for community benefit. There were over 34 million tons of food waste generated in the US alone in 2009 - at a cost of approximately $43 billion. And while less than 3% of that waste was recovered and recycled, there is growing interest and development in finding ways to utilize this waste in ways that will not only reduce greenhouse gasses, but provide energy, and potentially provide resources for other purposes.Food waste is an area of focus for a wide range of related industries from food science to energy and engineeringThis international authoring team represents the leading edge in research and development Provides insights on leading areas of current research as well as looking toward future opportunities for reusing food waste