Functional  Materials: For Energy, Sustainable Development and Biomedical Sciences

دانلود کتاب Functional Materials: For Energy, Sustainable Development and Biomedical Sciences

40000 تومان موجود

کتاب مواد کاربردی: برای انرژی، توسعه پایدار و علوم زیست پزشکی نسخه زبان اصلی

دانلود کتاب مواد کاربردی: برای انرژی، توسعه پایدار و علوم زیست پزشکی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 12


توضیحاتی در مورد کتاب Functional Materials: For Energy, Sustainable Development and Biomedical Sciences

نام کتاب : Functional Materials: For Energy, Sustainable Development and Biomedical Sciences
عنوان ترجمه شده به فارسی : مواد کاربردی: برای انرژی، توسعه پایدار و علوم زیست پزشکی
سری :
ناشر : De Gruyter
سال نشر : 2014
تعداد صفحات : 496
ISBN (شابک) : 9783110307825 , 9783110307818
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 16 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Contents\nForeword\nPreface\nContributing authors\nAbout the editors\n1 Introduction\nPart I: Functional materials: Synthesis and applications\n 2 A primer on polymer colloids: structure, synthesis and colloidal stability\n 2.1 Introduction\n 2.2 Polymer colloids inside out\n 2.2.1 How many polymer chains per particle?\n 2.2.2 How many particles?\n 2.2.3 Are the chains immobile within the nanoparticle?\n 2.2.4 Morphology of polymeric nanoparticles\n 2.3 Preparation of polymer nanoparticles\n 2.3.1 Emulsion polymerization\n 2.3.2 Miniemulsion polymerization\n 2.3.3 Microemulsion polymerization\n 2.3.4 Self-assembly in selective solvents\n 2.4 Colloidal stabilization\n 2.4.1 Electrostatic stabilization\n 2.4.2 Steric stabilization\n 2.4.3 Depletion stabilization\n 2.4.4 Future directions\n 3 Synthesis, functionalization and properties of fullerenes and graphene materials\n 3.1 Introduction\n 3.2 Fullerenes\n 3.2.1 General considerations\n 3.2.2 Synthesis and purification of fullerenes\n 3.2.3 Chemical and physical properties of C60\n 3.2.4 Chemical functionalization of C60\n 3.2.5 Applications\n 3.3 Graphene\n 3.3.1 Production of graphene\n 3.3.2 Graphene in energy conversion devices\n 4 Ordered mesoporous silica: synthesis and applications\n 4.1 Introduction\n 4.2 Ordered mesoporous silica (OMS)\n 4.2.1 Principle of synthesis\n 4.2.2 Mesostructure diversity and tailoring\n 4.3 Functionalization of ordered mesoporous silica\n 4.4 Morphology control\n 4.5 Selected applications of functionalized ordered mesoporous silica\n 4.5.1 Functionalized MSNs as controlled drug delivery platforms\n 4.5.2 Functionalized mesoporous materials for extraction chromatography (EXC) applications\n 4.5.3 Mesoporous organic-inorganic hybrid membranes for water desalination\n 5 Nanoparticles: Properties and applications\n 5.1 Introduction\n 5.2 Synthetic methods\n 5.2.1 Particle nucleation and growth\n 5.2.2 Synthesis in inverse micelles\n 5.3 Particle aggregation and stabilization of colloidal suspensions\n 5.4 Colloidal quantum dots\n 5.5 Metal nanoparticles\n 5.6 Metal oxide nanoparticles\n 5.6.1 Titanium dioxide\n 5.6.2 Iron oxide\n 5.6.3 Silica\n 5.7 Polymeric nanoparticles\n 5.8 Advanced architectures and hybrid systems\n 6 Conjugated polymers for organic electronics\n 6.1 Introduction\n 6.2 Processable conjugated polymers\n 6.3 Applications in renewable energy\n 6.3.1 Organic solar cells\n 6.3.2 Conjugated polymers for organic solar cells\n 6.4 Applications in micro-electronics\n 6.4.1 Field-effect transistors\n 6.4.2 Conjugated polymers for field-effect transistors\n 6.5 Applications in lighting\n 6.5.1 Light-emitting diodes\n 6.5.2 Conjugated polymers for light-emitting diodes\n 6.6 Summary\n 7 Theoretical tools for designing microscopic to macroscopic properties of functional materials\n 7.1 Methods\n 7.1.1 The link between microscopic and macroscopic scales\n 7.1.2 Ab initio methods\n 7.1.3 Bridging the gap between ab initio and atomistic levels\n 7.1.4 Atomistic simulation\n 7.1.5 Bridging the gap between atomistic and mesoscale levels\n 7.2 Examples\n 7.2.1 Quantum studies\n 7.2.2 Atomistic simulation\n 7.3 Summary\nPart II: Development of new materials for energy applications\n 8 Electrochemical energy storage systems\n 8.1 Introduction\n 8.2 Metrics and performance evaluation\n 8.3 Models and theory of electrochemical charge storage\n 8.3.1 Battery operation – a Faradaic process\n 8.3.2 Electrochemical capacitor operation – a non-Faradaic process\n 8.4 Electrolytes\n 8.5 Electrode materials\n 8.5.1 Electrochemical capacitors\n 8.5.2 Hybrid electrochemical capacitors\n 8.5.3 Lithium battery electrode materials\n 8.5.4 Negative (anode) electrode materials\n 8.5.5 The positive (cathode) electrode\n 8.5.6 Electrode production\n 8.6 Summary\n 9 Functional ionic liquids electrolytes in lithium-ion batteries\n 9.1 Introduction\n 9.1.1 Historical overview\n 9.1.2 What are ionic liquids?\n 9.1.3 Key properties as electrolytes\n 9.2 Ionic liquids as Li and Lithium-ion battery electrolytes\n 9.3 Functional ionic liquid electrolytes\n 9.3.1 Overview of functional ionic liquids\n 9.3.2 Solid electrolyte interphase\n 9.3.3 Transport of lithium ions\n 9.3.4 Electroactive ionic liquids as redox shuttles\n 9.3.5 Perspectives\n 10 Solid polymer proton conducting electrolytes for fuel cells\n 10.1 Introduction\n 10.2 Proton exchange membranes\n 10.2.1 Nafion®\n 10.2.2 Alternative sulfonated ionomers and membranes\n 10.3 Characterization of solid polymer electrolytes\n 10.3.1 Proton conductivity\n 10.3.2 States of water and water mobility\n 10.4 Summary\n 11 Supercritical adsorption of hydrogen on microporous adsorbents\n 11.1 Introduction\n 11.2 Fundamentals of supercritical adsorption\n 11.3 Supercritical adsorption isotherms\n 11.3.1 Virial expansion of the excess density in terms of pressure\n 11.3.2 Basic analytic models of the adsorption isotherm\n 11.3.3 Self-consistent approaches\n 11.4 The thermodynamics of adsorption\n 11.4.1 Properties of surface potential\n 11.5 Microporous adsorbents for hydrogen storage\n 11.5.1 Activated carbons\n 11.5.2 Single wall nanotubes\n 11.5.3 Metal organic frameworks\nPart III: New trends in sustainable development and biomedical applications\n 12 Advanced materials for biomedical applications\n 12.1 Introduction\n 12.2 History of biomaterials\n 12.3 Basics in material science for biomaterial applications\n 12.3.1 Biomaterial properties\n 12.3.2 Biometals\n 12.3.3 Bioceramics\n 12.3.4 Biosynthetic polymers\n 12.3.5 Natural polymers\n 12.4 Biomedical applications\n 12.4.1 Cardiovascular system\n 12.4.2 Musculoskeletal system\n 12.4.3 Visceral organs\n 12.4.4 Nervous system and sensory organs\n 12.4.5 Esthetic applications\n 12.4.6 Skin\n 12.5 Future trends\n 12.5.1 Tissue engineering basic concepts\n 12.5.2 Scaffolds\n 12.5.3 Surface modification\n 12.5.4 Stem cells\n 12.5.5 Bioreactors\n 12.5.6 Computational models\n 12.6 Summary\n 13 Nanoparticles for magnetic resonance imaging (MRI) applications in medicine\n 13.1 The basics of MRI in medicine\n 13.2 Relaxivity: the performance of MRI contrast agents\n 13.3 Synthesis and characterization of magnetic nanoparticles\n 13.3.1 Synthesis of magnetic nanocrystals\n 13.3.2 Nanoparticle coatings for MRI applications\n 13.3.3 Physicochemical characterization\n 13.4 Physical properties of magnetic nanoparticles\n 13.5 MR relaxation properties of magnetic nanoparticles\n 13.5.1 Relaxivity of paramagnetic CAs\n 13.5.2 Relaxivity of superparamagnetic CAs\n 13.5.3 Relaxometric performance of MRI CAs at clinical magnetic field strengths\n 13.6 Biological performance of magnetic nanoparticles for MRI\n 13.6.1 In vivo barriers\n 13.6.2 Impact of nanoparticle size and surface on colloidal stability and blood retention\n 13.6.3 Directing nanoparticles in vivo\n 13.6.4 Toxicity\n 13.7 Summary\n 14 Microfluidics for synthesis and biological functional materials: from device fabrication to applications\n 14.1 Introduction\n 14.2 A practical introduction to microfluidic reactors for material synthesis\n 14.2.1 Microfluidic reactor geometries\n 14.2.2 Device fabrication materials\n 14.2.3 Fabrication of polymer-based planar microreactors and components\n 14.3 Manipulating and measuring precursor reagent streams in microchannels\n 14.3.1 High surface area to volume ratios in microchannels\n 14.3.2 Rapid heat transfer\n 14.3.3 Control of concentrations\n 14.3.4 Controlling “time on chip”\n 14.3.5 Control of hydrodynamics and mass transfer\n 14.3.6 Characterization in microchannels\n 14.4 Microfluidics for polymer microparticles\n 14.4.1 Manipulating the shaping of liquid precursors\n 14.4.2 Effect of the channel wall\n 14.4.3 Emulsification of precursor droplets\n 14.4.4 Channel geometries to achieve emulsified droplets\n 14.4.5 Multiple emulsions\n 14.4.6 Forming linear threads and two-dimensional interfaces\n 14.4.7 Converting liquid precursors into solid micro-materials\n 14.4.8 Scale up: a circuit analysis of microfluidic flow in a highly parallelized microreactor\n 14.5 Microfluidics for synthesis of functional nanoparticles\n 14.5.1 Microfluidics for highly controlled nanoparticle synthesis\n 14.6 Biomaterials\n 14.6.1 Tissue engineering and membranes\n 14.6.2 Microenvironments for encapsulated cells\n 14.6.3 Biofilms\n 14.6.4 Microdevices utilizing functional biomaterials\n 14.7 Summary\n 15 Protein- and peptide-based materials: a source of inspiration for innovation\n 15.1 Introduction\n 15.2 Basics of proteins, peptides and polypeptides\n 15.2.1 Polypeptides are sequences of amino acids\n 15.2.2 Polypeptides can adopt various conformations\n 15.2.3 Polypeptides possess various levels of structural organization\n 15.3 Functional materials from fibrous proteins\n 15.3.1 Resilin & abductin\n 15.3.2 Byssus (mussel anchoring threads)\n 15.3.3 Silk\n 15.4 Functional materials from globular proteins\n 15.4.1 Natural proteins\n 15.4.2 Artificial proteins\n 15.5 Functional materials from synthetic peptides\n 15.6 Summary\n 16 Nanocomposite coatings\n 16.1 Introduction\n 16.2 Coating formulations\n 16.2.1 Chemical components\n 16.2.2 Mixing techniques\n 16.2.3 Application and curing\n 16.3 Nanoparticle additives\n 16.4 Coating characterization\n 16.4.1 Mechanical properties\n 16.4.2 Optical properties\n 16.4.3 X-ray imaging and particle aggregation\n 16.4.4 Weathering and artificial aging\n 16.5 Bio-based coatings\n 16.6 Future developments\n 16.7 Summary\nIndex




پست ها تصادفی