Fundamentals of Statistical and Thermal Physics

دانلود کتاب Fundamentals of Statistical and Thermal Physics

52000 تومان موجود

کتاب مبانی فیزیک آماری و حرارتی نسخه زبان اصلی

دانلود کتاب مبانی فیزیک آماری و حرارتی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید

این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.

امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 7

توضیحاتی در مورد کتاب Fundamentals of Statistical and Thermal Physics

نام کتاب : Fundamentals of Statistical and Thermal Physics
ویرایش : Reprint
عنوان ترجمه شده به فارسی : مبانی فیزیک آماری و حرارتی
سری :
نویسندگان :
ناشر : Waveland Press
سال نشر : 2009
تعداد صفحات : 673
ISBN (شابک) : 1577666127 , 9781577666127
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 271 مگابایت

بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.

فهرست مطالب :

Title Page
Chapter 1: Introduction to Statistical Methods
Random Walk and Binomial Distribution
1.1 Elementary statistical concepts and examples
1.2 The simple random walk problem in one dimension
1.3 General discussion of mean values
1.4 Calculation of mean values for the random walk problem
1.5 Probability distribution for large N
1.6 Gaussian probability distributions
General Discussion of the Random Walk
1.7 Probability distributions involving several variables
1.8 Comments on continuous probability distributions
1.9 General calculation of mean values for the random walk
1.10 Calculation of the probability distribution
1.11 Probability distribution for large N
Suggestions for Supplementary Reading
Chapter 2: Statistical Description of Systems of Particles
Statistical Formulation of the Mechanical Problem
2.1 Specification of the state of a system
2.2 Statistical ensemble
2.3 Basic postulates
2.4 Probability calculations
2.5 Behavior of the density of states
Interaction between Macroscopic Systems
2.6 Thermal interaction
2.7 Mechanical interaction
2.8 General interaction
2.9 Quasi-static processes
2.10 Quasi-static work done by pressure
2.11 Exact and \"inexact\" differentials
Suggestions for Supplementary Reading
Chapter 3: Statistical Thermodynamics
Irreversibility and the Attainment of Equilibrium
3.1 Equilibrium conditions and constraints
3.2 Reversible and irreversible processes
Thermal Interaction between Macroscopic Systems
3.3 Distribution of energy between systems in equilibrium
3.4 The approach to thermal equilibrium
3.5 Temperature
3.6 Heat reservoirs
3.7 Sharpness of the probability distribution
General Interaction between Macroscopic Systems
3.8 Dependence of the density of states on the external parameters
3.9 Equilibrium between interacting systems
3.10 Properties of the entropy
Summary of Fundamental Results
3.11 Thermodynamic laws and basic statistical relations
3.12 Statistical calculation of thermodynamic quantities
Suggestions for Supplementary Reading
Chapter 4: Macroscopic Parameters and Their Measurement
4.1 Work and internal energy
4.2 Heat
4.3 Absolute temperature
4.4 Heat capacity and specific heat
4.5 Entropy
4.6 Consequences of the absolute definition of entropy
4.7 Extensive and intensive parameters
Suggestions for Supplementary Reading
Chapter 5: Simple Applications of Macroscopic Thermodynamics
Properties of Ideal Gases
5.1 Equation of state and internal energy
5.2 Specific heats
5.3 Adiabatic expansion or compression
5.4 Entropy
General Relations for a Homogeneous Substance
5.5 Derivation of general relations
5.6 Summary of Maxwell relations and thermodynamic functions
5.7 Specific heats
5.8 Entropy and internal energy
Free Expansion and Throttling Processes
5.9 Free expansion of a gas
5.10 Throttling (or Joule-Thomson) Process
Heat Engines and Refrigerators
5.11 Heat engines
5.12 Refrigerators
Suggestions for Supplementary Reading
Chapter 6: Basic Methods and Results of Statistical Mechanics
Ensembles Representative of Situations of Physical Interest
6.1 Isolated system
6.2 System in contact with a heat reservoir
6.3 Simple applications of the canonical distribution
6.4 System with specified mean energy
6.5 Calculation of mean values in a canonical ensemble
6.6 Connection with thermodynamics
Approximation Methods
6.7 Ensembles used as approximations
6.8 Mathematical approximation methods
Generalizations and Alternative Approaches
6.9 Grand canonical and other ensembles
6.10 Alternative derivation of the canonical distribution
Suggestions for Supplementary Reading
Chapter 7: Simple Applications of Statistical Mechanics
General Method of Approach
7.1 Partition functions and their properties
Ideal Monatomic Gas
7.2 Calculation of thermodynamic quantities
7.3 Gibbs paradox
7.4 Validity of the classical approximation
The Equipartition Theorem
7.5 Proof of the theorem
7.6 Simple applications
7.7 Specific heats of solids
7.8 General calculation of magnetization
Kinetic Theory of Dilute Gases in Equilibrium
7.9 Maxwell velocity distribution
7.10 Related velocity distributions and mean values
7.11 Number of molecules striking a surface
7.12 Effusion
7.13 Pressure and momentum transfer
Suggestions for Supplementary Reading
Chapter 8: Equilibrium between Phases or Chemical Species
General Equilibrium Conditions
8.1 Isolated system
8.2 System in contact with a reservoir at constant temperature
8.3 System in contact with a reservoir at constant temperature and pressure
8.4 Stability conditions for a homogeneous substance
Equilibrium between Phases
8.5 Equilibrium conditions and the Clausius-Clapeyron equation
8.6 Phase transformations and the equation of state
Systems with Several Components; Chemical Equilibrium
8.7 General relations for a system with several components
8.8 Alternative discussion of equilibrium between phases
8.9 General conditions for chemical equilibrium
8.10 Chemical equilibrium between ideal gases
Suggestions for Supplementary Reading
Chapter 9: Quantum Statistics of Ideal Gases
Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac Statistics
9.1 Identical particles and symmetry requirements
9.2 Formulation of the statistical problem
9.3 The quantum distribution functions
9.4 Maxwell-Boltzmann statistics
9.5 Photon statistics
9.6 Bose-Einstein statistics
9.7 Fermi-Dirac statistics
9.8 Quantum statistics in the classical limit
Ideal Gas in the Classical Limit
9.9 Quantum states of a single particle
9.10 Evaluation of the partition function
9.11 Physical implications of the quantum-mechanical enumeration of states
9.12 Partition functions of polyatomic molecules
Black-Body Radiation
9.13 Electromagnetic radiation in thermal equilibrium inside an enclosure
9.14 Nature of the radiation inside an arbitrary enclosure
9.15 Radiation emitted by a body at temperature T
Conduction Electrons in Metals
9.16 Consequences of the Fermi-Dirac distribution
9.17 Quantitative calculation of the electronic specific heat
Suggestions for Supplementary Reading
Chapter 10: Systems of Interacting Particles
10.1 Lattice vibrations and normal modes
10.2 Debye approximation
Nonideal Classical Gas
10.3 Calculation of the partition function for low densities
10.4 Equation of state and virial coefficients
10.5 Alternative derivation of the van der Waals equation
10.6 Interaction between spins
10.7 Weiss molecular-field approximation
Suggestions for Supplementary Reading
Chapter 11: Magnetism and Low Temperatures
11.1 Magnetic work
11.2 Magnetic cooling
11.3 Measurement of very low absolute temperatures
11.4 Superconductivity
Suggestions for Supplementary Reading
Chapter 12: Elementary Kinetic Theory of Transport Processes
12.1 Collision time
12.2 Collision time and scattering cross section
12.3 Viscosity
12.4 Thermal conductivity
12.5 Self-diffusion
12.6 Electrical conductivity
Suggestions for Supplementary Reading
Chapter 13: Transport Theory Using the Relaxation-Time Approximation
13.1 Transport processes and distribution functions
13.2 Boltzmann equation in the absence of collisions
13.3 Path integral formulation
13.4 Example: calculation of electrical conductivity
13.5 Example: calculation of viscosity
13.6 Boltzmann differential equation formulation
13.7 Equivalence of the two formulations
13.8 Examples of the Boltzmann equation method
Suggestions for Supplementary Reading
Chapter 14: Near-Exact Formulation of Transport Theory
14.1 Description of two-particle collisions
14.2 Scattering cross sections and symmetry properties
14.3 Derivation of the Boltzmann equation
14.4 Equation of change for mean values
14.5 Conservation equations and hydrodynamics
14.6 Example: simple discussion of electrical conductivity
14.7 Approximation methods for solving the Boltzmann equation
14.8 Example: calculation of the coefficient of viscosity
Suggestions for Supplementary Reading
Chapter 15: Irreversible Processes and Fluctuations
Transition Probabilities and Master Equation
15.1 Isolated system
15.2 System in contact with a heat reservoir
15.3 Magnetic resonance
15.4 Dynamic nuclear polarization; Overhauser effect
Simple Discussion of Brownian Motion
15.5 Langevin equation
15.6 Calculation of the mean-square displacement
Detailed Analysis of Brownian Motion
15.7 Relation between dissipation and the fluctuating force
15.8 Correlation functions and the friction constant
15.9 Calculation of the mean-square velocity increment
15.10 Velocity correlation function and mean-square displacement
Calculation of Probability Distributions
15.11 The Fokker-Planck equation
15.12 Solution of the Fokker-Planck equation
Fourier Analysis of Random Functions
15.13 Fourier analysis
15.14 Ensemble and time averages
15.15 Wiener-Khintchine relations
15.16 Nyquist\'s theorem
15.17 Nyquist\'s theorem and equilibrium conditions
General Discussion of Irreversible Processes
15.18 Fluctuations and Onsager relations
Suggestions for Supplementary Reading
Numerical Constants
Answers to Selected Problems

پست ها تصادفی