فهرست مطالب :
Cover
FUNDAMENTALS OF THERMAL-FLUID SCIENCES
ABOUT THE AUTHORS
BRIEF CONTENTS
CONTENTS
PREFACE
ACKNOWLEDGMENTS
CHAPTER ONE: INTRODUCTION AND OVERVIEW
1–1: Introduction to Thermal Fluid Sciences
Application Areas of Thermal Fluid Sciences
1–2: Thermodynamics
1–3: Heat Transfer
1–4: Fluid Mechanics
1–5: Importance of Dimensions and Units
Some SI and English Units
Dimensional Homogeneity
Unity Conversion Ratios
1–6: Problem-Solving Technique
Step 1: Problem Statement
Step 2: Schematic
Step 3: Assumptions and Approximations
Step 4: Physical Laws
Step 5: Properties
Step 6: Calculations
Step 7: Reasoning, Verification, and Discussion
Engineering Software Packages
Equation Solvers
A Remark on Significant Digits
Summary
References and Suggested Readings
problems
PART 1: THERMODYNAMICS
CHAPTER TWO: BASIC CONCEPTS OF THERMODYNAMICS
2–1: Systems and Control Volumes
2–2: Properties of a System
Continuum
2–3: Density and Specific Gravity
2–4: State and Equilibrium
The State Postulate
2–5: Processes and Cycles
The Steady-Flow Process
2–6: Temperature and the Zeroth Law of Thermodynamics
Temperature Scales
2–7: Pressure
Variation of Pressure with Depth
2–8: Pressure Measurement Devices
The Barometer
The Manometer
Other Pressure Measurement Devices
Summary
References and Suggested Readings
Problems
CHAPTER THREE: ENERGY, ENERGY TRANSFER, AND GENERAL ENERGY ANALYSIS
3–1: Introduction
3–2: Forms of Energy
Some Physical Insight into Internal Energy
More on Nuclear Energy
Mechanical Energy
3–3: Energy Transfer by Heat
Historical Background on Heat
3–4: Energy Transfer By Work
Electrical Work
3–5: Mechanical Forms Of Work
Shaft Work
Spring Work
Work Done on Elastic Solid Bars
Work Associated with the Stretching of a Liquid Film
Work Done to Raise or to Accelerate a Body
Nonmechanical Forms of Work
3–6: The First Law Of Thermodynamics
Energy Balance
Energy Change of a System, ΔEsystem
Mechanisms of Energy Transfer, Ein and Eout
3–7: Energy Conversion Efficiencies
Efficiencies of Mechanical and Electrical Devices
Summary
References and Suggested Readings
Problems
CHAPTER FOUR: PROPERTIES OF PURE SUBSTANCES
4–1: Pure Substance
4–2: Phases of a Pure Substance
4–3: Phase-Change Processes of Pure Substances
Compressed Liquid and Saturated Liquid
Saturated Vapor and Superheated Vapor
Saturation Temperature and Saturation Pressure
Some Consequences of Tsat and Psat Dependence
4–4: Property Diagrams for Phase-Change Processes
1: The T-v Diagram
2: The P-v Diagram
Extending the Diagrams to Include the Solid Phase
3: The P-T Diagram
The P-v-T Surface
4–5: Property Tables
Enthalpy—A Combination Property
1a: Saturated Liquid and Saturated Vapor States
1: Saturated Liquid–Vapor Mixture
2 Superheated Vapor
3 Compressed Liquid
Reference State and Reference Values
4–6: The Ideal-Gas Equation of State
Is Water Vapor an Ideal Gas?
4–7: Compressibility Factor—A Measure of Deviation from Ideal-Gas Behavior
Summary
References and Suggested Readings
Problems
CHAPTER FIVE: ENERGY ANALYSIS OF CLOSED SYSTEMS
5–1: Moving Boundary Work
Polytropic Process
5–2: Energy Balance for Closed Systems
5–3: Specific Heats
5–4: Internal Energy, Enthalpy, and Specific Heats of Ideal Gases
Specific Heat Relations of Ideal Gases
5–5: Internal Energy, Enthalpy, and Specific Heats of Solids and Liquids
Internal Energy Changes
Enthalpy Changes
Summary
References and Suggested Readings
Problems
CHAPTER SIX: MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES
6–1: Conservation of Mass
Mass and Volume Flow Rates
Conservation of Mass Principle
Mass Balance for Steady-Flow Processes
Special Case: Incompressible Flow
6–2: Flow Work and the Energy of a Flowing Fluid
Total Energy of a Flowing Fluid
Energy Transport by Mass
6–3: Energy Analysis of Steady-Flow Systems
6–4: Some Steady-Flow Engineering Devices
1 Nozzles and Diffusers
2 Turbines and Compressors
3 Throttling Valves
4a Mixing Chambers
4b Heat Exchangers
5 Pipe and Duct Flow
6–5: Energy Analysis of Unsteady-Flow Processes
Summary
References and Suggested Readings
Problems
CHAPTER SEVEN: THE SECOND LAW OF THERMODYNAMICS
7–1: Introduction to the Second Law
7–2: Thermal Energy Reservoirs
7–3: Heat Engines
Thermal Efficiency
Can We Save Qout?
The Second Law of Thermodynamics: Kelvin–Planck Statement
7–4: Refrigerators and Heat Pumps
Coefficient of Performance
Heat Pumps
Performance of Refrigerators, Air Conditioners, and Heat Pumps
The Second Law of Thermodynamics: Clausius Statement
Equivalence of the Two Statements
7–5: Reversible and Irreversible Processes
Irreversibilities
Internally and Externally Reversible Processes
7–6: The Carnot Cycle
The Reversed Carnot Cycle
7–7: The Carnot Principles
7–8: The Thermodynamic Temperature Scale
7–9: The Carnot Heat Engine
The Quality of Energy
7–10: The Carnot Refrigerator and Heat Pump
Summary
References and Suggested Readings
Problems
CHAPTER EIGHT: ENTROPY
8–1: Entropy
A Special Case: Internally Reversible Isothermal Heat Transfer Processes
8–2: The Increase of Entropy Principle
Some Remarks About Entropy
8–3: Entropy Change of Pure Substances
8–4: Isentropic Processes
8–5: Property Diagrams Involving Entropy
8–6: What is Entropy?
Entropy and Entropy Generation in Daily Life
8–7: The T ds Relations
8–8: Entropy Change of Liquids and Solids
8–9: The Entropy Change of Ideal Gases
Constant Specific Heats (Approximate Analysis)
Variable Specific Heats (Exact Analysis)
Isentropic Processes of Ideal Gases
Constant Specific Heats (Approximate Analysis)
Variable Specific Heats (Exact Analysis)
Relative Pressure and Relative Specific Volume
8–10: Reversible Steady-Flow Work
Proof that Steady-Flow Devices Deliver the Most and Consume the Least Work When the Process Is Reversible
8–11: Isentropic Efficiencies of Steady-Flow Devices
Isentropic Efficiency of Turbines
Isentropic Efficiencies of Compressors and Pumps
Isentropic Efficiency of Nozzles
8–12: Entropy Balance
Entropy Change of a System, ΔSsystem
Mechanisms of Entropy Transfer, Sin and Sout
1 Heat Transfer
2 Mass Flow
Entropy Generation, Sgen
Closed Systems
Control Volumes
Summary
References and Suggested Readings
Problems
CHAPTER NINE: POWER AND REFRIGERATION CYCLES
9–1: Basic Considerations in the Analysis of Power Cycles
9–2: The Carnot Cycle and its Value in Engineering
9–3: Air-Standard Assumptions
9–4: An Overview of Reciprocating Engines
9–5: Otto Cycle: The Ideal Cycle for Spark-Ignition Engines
9–6: Diesel Cycle: The Ideal Cycle for Compression-Ignition Engines
9–7: Brayton Cycle: The Ideal Cycle for Gas-Turbine Engines
Development of Gas Turbines
Deviation of Actual Gas-Turbine Cycles from Idealized Ones
9–8: The Brayton Cycle with Regeneration
9–9: The Carnot Vapor Cycle
9–10: Rankine Cycle: The Ideal Cycle for Vapor Power Cycles
Energy Analysis of the Ideal Rankine Cycle
9–11: Deviation of Actual Vapor Power Cycles From Idealized Ones
9–12: How Can We Increase The Efficiency of The Rankine Cycle?
Lowering the Condenser Pressure (Lowers Tlow,avg)
Superheating the Steam to High Temperatures (Increases Thigh,avg)
Increasing the Boiler Pressure (Increases Thigh,avg)
9–13: The Ideal Reheat Rankine Cycle
9–14: Refrigerators and Heat Pumps
9–15: The Reversed Carnot Cycle
9–16: The Ideal Vapor-Compression Refrigeration Cycle
9–17: Actual Vapor-Compression Refrigeration Cycle
9–18: Heat Pump Systems
Summary
References and Suggested Readings
Problems
PART 2: FLUID MECHANICS
CHAPTER TEN: INTRODUCTION AND PROPERTIES OF FLUIDS
10–1: The No-Slip Condition
10–2: Classification of Fluid Flows
Viscous Versus Inviscid Regions of Flow
Internal Versus External Flow
Compressible Versus Incompressible Flow
Laminar Versus Turbulent Flow
Natural (or Unforced) Versus Forced Flow
Steady Versus Unsteady Flow
One-, Two-, and Three-Dimensional Flows
Uniform Versus Nonuniform Flow
10–3: Vapor Pressure and Cavitation
10–4: Viscosity
10–5: Surface Tension and Capillary Effect
Capillary Effect
Summary
References and Suggested Reading
Problems
CHAPTER ELEVEN: FLUID STATICS
11–1: Introduction to Fluid Statics
11–2: Hydrostatic Forces on Submerged Plane Surfaces
Special Case: Submerged Rectangular Plate
11–3: Hydrostatic Forces on Submerged Curved Surfaces
11–4: Buoyancy and Stability
Stability of Immersed and Floating Bodies
Summary
References and Suggested Reading
Problems
CHAPTER TWELVE: BERNOULLI AND ENERGY EQUATIONS
12–1: The Bernoulli Equation
Acceleration of a Fluid Particle
Derivation of the Bernoulli Equation
Force Balance Across Streamlines
Unsteady, Compressible Flow
Static, Dynamic, and Stagnation Pressures
Limitations on the Use of the Bernoulli Equation
Hydraulic Grade Line (HGL) and Energy Grade Line (EGL)
Applications of the Bernoulli Equation
12–2: Energy Analysis of Steady Flows
Special Case: Incompressible Flow with No Mechanical Work Devices and Negligible Friction
Kinetic Energy Correction Factor, α
Summary
References and Suggested Reading
Problems
CHAPTER THIRTEEN: MOMENTUM ANALYSIS OF FLOW SYSTEMS
13–1: Newton’s Laws
13–2: Choosing a Control Volume
13–3: Forces Acting on a Control Volume
13–4: The Reynolds Transport Theorem
An Application: Conservation of Mass
13–5: The Linear Momentum Equation
Special Cases
Momentum-Flux Correction Factor, β
Steady Flow
Flow with No External Forces
Summary
References and Suggested Reading
Problems
CHAPTER FOURTEEN: INTERNAL FLOW
14–1: Introduction
14–2: Laminar and Turbulent Flows
Reynolds Number
14–3: The Entrance Region
Entry Lengths
14–4: Laminar Flow in Pipes
Pressure Drop and Head Loss
Effect of Gravity on Velocity and Flow Rate in Laminar Flow
Laminar Flow in Noncircular Pipes
14–5: Turbulent Flow in Pipes
Turbulent Velocity Profile
The Moody Chart and Its Associated Equations
Types of Fluid Flow Problems
14–6: Minor Losses
14–7: Piping Networks and Pump Selection
Series and Parallel Pipes
Piping Systems with Pumps and Turbines
Summary
References and Suggested Reading
Problems
CHAPTER FIFTEEN: EXTERNAL FLOW: DRAG AND LIFT
15–1: Introduction
15–2: Drag and Lift
15–3: Friction and Pressure Drag
Reducing Drag by Streamlining
Flow Separation
15–4: Drag Coefficients of Common Geometries
Biological Systems and Drag
Drag Coefficients of Vehicles
Superposition
15–5: Parallel Flow Over Flat Plates
Friction Coefficient
15–6: Flow Over Cylinders and Spheres
Effect of Surface Roughness
15–7: Lift
Finite-Span Wings and Induced Drag
Summary
References and Suggested Reading
Problems
PART 3: HEAT TRANSFER
CHAPTER SIXTEEN: MECHANISMS OF HEAT TRANSFER
16–1: Introduction
16–2: Conduction
Thermal Conductivity
Thermal Diffusivity
16–3: Convection
16–4: Radiation
16–5: Simultaneous Heat Transfer Mechanisms
Summary
References and Suggested Reading
Problems
CHAPTER SEVENTEEN: STEADY HEAT CONDUCTION
17–1: Steady Heat Conduction in Plane Walls
Thermal Resistance Concept
Thermal Resistance Network
Multilayer Plane Walls
17–2: Thermal Contact Resistance
17–3: Generalized Thermal Resistance Networks
17–4: Heat Conduction in Cylinders and Spheres
Multilayered Cylinders and Spheres
17–5: Critical Radius of Insulation
17–6: Heat Transfer from Finned Surfaces
Fin Equation
Fin Efficiency
Fin Effectiveness
Proper Length of a Fin
Summary
References and Suggested Reading
Problems
CHAPTER EIGHTEEN: TRANSIENT HEAT CONDUCTION
18–1: Lumped System Analysis
Criteria for Lumped System Analysis
Some Remarks on Heat Transfer in Lumped Systems
18–2: Transient Heat Conduction in Large Plane Walls, Long Cylinders, and Spheres with Spatial Effects
Nondimensionalized One-Dimensional Transient Conduction Problem
Approximate Analytical Solutions
18–3: Transient Heat Conduction in Semi-Infinite Solids
Contact of Two Semi-Infinite Solids
18–4: Transient Heat Conduction in Multidimensional Systems
Summary
References and Suggested Reading
Problems
CHAPTER NINETEEN: FORCED CONVECTION
19–1: Physical Mechanism of Convection
Nusselt Number
19–2: Thermal Boundary Layer
Prandtl Number
19–3: Parallel Flow Over Flat Plates
Flat Plate with Unheated Starting Length
Uniform Heat Flux
19–4: Flow Across Cylinders and Spheres
19–5: General Considerations for Pipe Flow
Thermal Entrance Region
Entry Lengths
19–6: General Thermal Analysis
Constant Surface Heat Flux (qs = constant)
Constant Surface Temperature (Ts = constant)
19–7: Laminar Flow in Tubes
Constant Surface Heat Flux
Constant Surface Temperature
Laminar Flow in Noncircular Tubes
Developing Laminar Flow in the Entrance Region
19–8: Turbulent Flow in Tubes
Developing Turbulent Flow in the Entrance Region
Turbulent Flow in Noncircular Tubes
Flow Through Tube Annulus
Heat Transfer Enhancement
Summary
References and Suggested Reading
Problems
CHAPTER TWENTY: NATURAL CONVECTION
20–1: Physical Mechanism of Natural Convection
20–2: Equation Of Motion and the Grashof Number
The Grashof Number
20–3: Natural Convection Over Surfaces
Vertical Plates (Ts = constant)
Vertical Plates ( qs = constant)
Vertical Cylinders
Inclined Plates
Horizontal Plates
Horizontal Cylinders and Spheres
20–4: Natural Convection Inside Enclosures
Effective Thermal Conductivity
Horizontal Rectangular Enclosures
Inclined Rectangular Enclosures
Vertical Rectangular Enclosures
Concentric Cylinders
Concentric Spheres
Combined Natural Convection and Radiation
Summary
References and Suggested Reading
Problems
CHAPTER TWENTY ONE: RADIATION HEAT TRANSFER
21–1: Introduction
21–2: Thermal Radiation
21–3: Blackbody Radiation
21–4: Radiative Properties
Emissivity
Absorptivity, Reflectivity, and Transmissivity
Kirchhoff’s Law
The Greenhouse Effect
21–5: The View Factor
21–6: View Factor Relations
1 The Reciprocity Relation
2 The Summation Rule
3 The Superposition Rule
4 The Symmetry Rule
View Factors Between Infinitely Long Surfaces: The Crossed-Strings Method
21–7: Radiation Heat Transfer: Black Surfaces
21–8: Radiation Heat Transfer: Diffuse, Gray Surfaces
Radiosity
Net Radiation Heat Transfer to or from a Surface
Net Radiation Heat Transfer Between Any Two Surfaces
Methods of Solving Radiation Problems
Radiation Heat Transfer in Two-Surface Enclosures
Radiation Heat Transfer in Three-Surface Enclosures
Summary
References and Suggested Reading
Problems
CHAPTER TWENTY TWO: HEAT EXCHANGERS
22–1: Types of Heat Exchangers
22–2: The Overall Heat Transfer Coefficient
Fouling Factor
22–3: Analysis of Heat Exchangers
22–4: The Log Mean Temperature Difference Method
Counterflow Heat Exchangers
Multipass and Crossflow Heat Exchangers: Use of a Correction Factor
22–5: The Effectiveness–Ntu Method
Summary
References and Suggested Reading
Problems
APPENDIX 1: PROPERTY TABLES AND CHARTS (SI UNITS)
TABLE A–1: Molar mass, gas constant, and critical-point properties
TABLE A–2: Ideal-gas specific heats of various common gases
TABLE A–3: Properties of common liquids, solids, and foods
TABLE A–4: Saturated water—Temperature table
TABLE A–5: Saturated water—Pressure table
TABLE A–6 : Superheated water
TABLE A–7: Compressed liquid water
TABLE A–8: Saturated ice–water vapor
FIGURE A–9: T-s diagram for water
FIGURE A–10: Mollier diagram for water
TABLE A–11: Saturated refrigerant-134a—Temperature table
TABLE A–12: Saturated refrigerant-134a—Pressure table
TABLE A–13: Superheated refrigerant-134a
FIGURE A–14: P-h diagram for refrigerant-134a
TABLE A–15: Properties of saturated water
TABLE A–16: Properties of saturated refrigerant-134a
TABLE A–17: Properties of saturated ammonia
TABLE A–18: Properties of saturated propane
TABLE A–19: Properties of liquids
TABLE A–20: Properties of liquid metals
TABLE A–21: Ideal-gas properties of air
TABLE A–22: Properties of air at 1 atm pressure
TABLE A–23: Properties of gases at 1 atm pressure
TABLE A–24: Properties of solid metals
TABLE A–25: Properties of solid nonmetals
TABLE A–26: Emissivities of surfaces
FIGURE A–27: The Moody chart
FIGURE A–28: Nelson–Obert generalized compressibility chart
APPENDIX 2: PROPERTY TABLES AND CHARTS (ENGLISH UNITS)
Table A–1E: Molar mass, gas constant, and critical-point properties
Table A–2E: Ideal-gas specific heats of various common gases
Table A–3E: Properties of common liquids, solids, and foods
Table A–4E: Saturated water—Temperature table
Table A–5E: Saturated water—Pressure table
Table A–6E: Superheated water
Table A–7E: Compressed liquid water
Table A–8E: Saturated ice–water vapor
Figure A–9E: T-s diagram for water
Figure A–10E: Mollier diagram for water
Table A–11E: Saturated refrigerant-134a—Temperature table
Table A–12E: Saturated refrigerant-134a—Pressure table
Table A–13E: Superheated refrigerant-134a
Figure A–14E: P-h diagram for refrigerant-134a
Table A–15E: Properties of saturated water
Table A–16E: Properties of saturated refrigerant-134a
Table A–17E: Properties of saturated ammonia
Table A–18E: Properties of saturated propane
Table A–19E: Properties of liquids
Table A–20E: Properties of liquid metals
Table A–21E: Ideal-gas properties of air
Table A–22E: Properties of air at 1 atm pressure
Table A–23E: Properties of gases at 1 atm pressure
Table A–24E: Properties of solid metals
Table A–25E: Properties of solid nonmetals
INDEX
NOMENCLATURE
Conversion Factors and Some Physical Constants