توضیحاتی در مورد کتاب :
از پشت جلد
این کتاب درسی موضوعات متنوعی را در گراف و نظریه شبکه، هم از منظر نظری و هم از دیدگاه مدلسازی کاربردی، پوشش میدهد. Mathematica® برای نشان دادن بسیاری از جنبه های مدل سازی استفاده می شود. تئوری گراف و ابزارهای ساخت مدل در کنار هم با تکنیک های موثر برای حل مسائل عملی از طریق پیاده سازی کامپیوتری توسعه داده شده اند. این کتاب با در نظر گرفتن سه خواننده اصلی طراحی شده است. برنامه های درسی یا توالی های پیشنهادی برای مطالعه برای هر یک از سه مخاطب دانش آموز ارائه شده است: ریاضیات، ریاضیات کاربردی/تحقیق عملیات، و علوم کامپیوتر. علاوه بر جذابیت بصری هر صفحه، متن حاوی سنگهای فراوانی است. بیشتر فصول با توصیف مسائل واقعی زندگی باز می شوند که به عنوان انگیزه ای برای توسعه نظری موضوع مورد استفاده قرار می گیرند. هر فصل با سه مجموعه تمرین مختلف به پایان می رسد. اولین مجموعه تمرینها استاندارد هستند و برای خوانندهای که از نظر ریاضی تمایل بیشتری دارند، طراحی شدهاند. بسیاری از اینها تمرینات معمولی هستند که برای آزمایش درک مطالب در متن طراحی شده اند، اما برخی از آنها چالش برانگیزتر هستند. مجموعه دوم تمرینها برای خوانندههای باهوش فناوری رایانه در نظر گرفته شده است و تمرینهای رایانهای را با استفاده از Mathematica ارائه میکند. مجموعه نهایی شامل پروژههای بزرگتری است که هدف آن تجهیز خوانندگان با پیشینههای علوم کاربردی برای به کارگیری مهارتهای لازم آموختهشده در فصل در زمینه حل مسئله در دنیای واقعی است. علاوه بر این، هر فصل یادداشتهای زندگینامهای و همچنین تصاویری از نظریهپردازان گراف و ریاضیدانانی را ارائه میدهد که به طور قابل توجهی در توسعه نتایج مستند شده در فصل مشارکت داشتهاند. این یادداشت ها برای زنده کردن موضوعات پوشش داده شده است و به خواننده امکان می دهد چهره ها را با برخی از اکتشافات و نتایج مهم ارائه شده مرتبط کند. در مجموع، حدود 100 یادداشت زندگینامه در سراسر کتاب ارائه شده است.
مطالب این کتاب در سه بخش مجزا تنظیم شده است که هر کدام تمرکز متفاوتی دارند. بخش اول به موضوعات بهینه سازی شبکه با تمرکز بر مفاهیم اساسی در پیچیدگی الگوریتمی و محاسبه مسیرهای بهینه، کوتاه ترین درختان پوشا، حداکثر جریان ها و جریان های کم هزینه در شبکه ها و همچنین حل مشکلات مکان یابی شبکه اختصاص دارد. . بخش دوم به انواع مسائل کلاسیک در نظریه گراف، از جمله مسائل مربوط به تطابق، پیمایش لبه و رأس، اتصال، مسطح بودن، رنگ آمیزی لبه و رأس، و جهت گیری نمودارها اختصاص دارد. در نهایت، تمرکز در بخش سوم بر روی حوزههای مدرن مطالعه در نظریه گراف است که شامل تسلط گراف، نظریه رمزی، نظریه گراف اکسترمال، شمارش گراف و کاربرد روش احتمالی است.
درباره نویسنده
مایکل ای. هنینگ، استاد محقق در گروه ریاضیات و ریاضیات کاربردی، دانشگاه ژوهانسبورگ است. علایق تحقیقاتی پروفسور هنینگ در نظریه گراف و نظریه هایپرگراف است. موضوعات تحقیقاتی مورد علاقه او در تئوری سلطه در نمودارها و عرضی ها در ابرگراف ها است. بهعلاوه، مایکل هنینگ تالیف سلطه کامل در نمودارها (SMM)، ترانورال در ابرگرافهای یکنواخت خطی (DEVM 63)، از سلطه تا رنگآمیزی (SBM) و چندین جلد منتشر شده با اسپرینگر است.
Jan H. van Vuuren استاد تحقیقات عملیات در گروه مهندسی صنایع، دانشگاه Stellenbosch است. علایق تحقیقاتی او شامل بهینه سازی ترکیبی بر روی نمودارها، نظریه رمزی گراف، مسائل رنگ آمیزی نمودار، مسائل مسیریابی گراف و نظریه تسلط گراف است.
فهرست مطالب :
Contents
Preface
About this book
Organisation of material in the book
Part 1: Topics in network optimisation
Part 2: Topics in classical graph theory
Part 3: Topics in modern graph theory
The intended audience
Notation
Acknowledgements
Invitation
List of Algorithms
List of Biographical Notes
PART 1 Topics in network optimisation
Chapter 1 An introduction to graphs
1.1 Introduction
1.2 What is a graph?
1.3 Special graphs
1.4 Operations on graphs
1.5 Degree sequences
1.6 Isomorphisms
1.7 Directed graphs
1.8 Representing a (di)graph on a computer
1.9 Multigraphs and pseudographs
Exercises
Computer exercises
Projects
Further reading
Chapter 2 Graph connectedness
2.1 Introduction
2.2 Connected graphs
2.3 Distance in graphs
2.4 Cut-vertices and bridges
2.5 Directed graphs
2.6 Further study of connectivity in graphs
Exercises
Computer exercises
Projects
Further reading
Chapter 3 Algorithmic complexity
3.1 Introduction
3.2 "Big O" notation
3.3 A classification scheme for decision problems
3.4 Polynomial-time reducibility and ness
3.5 Decision problems vs. computation problems
Exercises
Computer exercises
Projects
Further reading
Chapter 4 Optimal paths
4.1 Introduction
4.2 Distance in weighted graphs
4.3 Shortest paths in weighted graphs
4.3.1 Dijkstra's algorithm
4.3.2 Floyd’s algorithm
4.4 Longest paths in weighted digraphs
Exercises
Computer exercises
Projects
Further reading
Chapter 5 Trees
5.1 Introduction
5.2 Properties of trees
5.3 Constructing minimum spanning trees
5.3.1 Kruskal's algorithm
5.3.2 Prim's algorithm
5.4 Rooted trees
5.5 Depth-first tree searches
Exercises
Computer exercises
Projects
Further reading
Chapter 6 Location problems
6.1 Introduction
6.2 The centre of a graph
6.3 The median of a graph
6.4 General centres and medians
6.5 Absolute centres and medians
6.6 General absolute centres and medians
Exercises
Computer exercises
Projects
Further reading
Chapter 7 Maximum flow networks
7.1 Introduction
7.2 Preliminary concepts
7.3 The max-flow min-cut theorem
7.4 The max-flow min-cut algorithm
Exercises
Computer exercises
Projects
Further reading
Chapter 8 Minimum-cost network flows
8.1 Introduction
8.2 Network flow and linear programming theory
8.3 Basic feasible solutions
8.4 The network simplex algorithm
Exercises
Computer exercises
Projects
Further reading
PART 2 Topics in classical graph theory
Chapter 9 Matchings
9.1 Introduction
9.2 Maximum matchings
9.3 Vertex covers
9.4 Tutte's theorem
9.5 The Tutte-Berge formula
9.6 The binding number of a graph
9.7 Matching algorithms for bipartite graphs
9.7.1 Method I: Network flows
9.7.2 Method II: Augmenting paths
9.8 A matching algorithm for general graphs
9.9 A weighted matching algorithm
9.9.1 Linear programming background
9.9.2 The maximum weight matching problem
9.9.3 Outline of the maximum weight matching algorithm
9.9.4 A worked example
Exercises
Computer exercises
Projects
Suggestions for further background reading
Further reading
Chapter 10 Eulerian graphs
10.1 Introduction
10.2 Finding eulerian circuits and trails
10.3 The Chinese postman problem
10.4 Other postman problems
10.5 Eulerian digraphs
10.6 Fleury's algorithm for digraphs
Exercises
Computer exercises
Projects
Further reading
Chapter 11 Hamiltonian graphs
11.1 Introduction
11.2 Which graphs are hamiltonian?
11.3 The closure function
11.4 The travelling salesman problem
11.4.1 The nearest-neighbour heuristic
11.4.2 A lower bound on TSP solutions
11.4.3 Instances of the TSP satisfying the triangle inequality
11.4.4 Christofides' algorithm
11.5 Almost traceability and almost hamiltonicity
11.5.1 Hypotraceability of graphs
11.5.2 Hypohamiltonicity of graphs
11.5.3 Hypotraceability and hypohamiltonicity of digraphs
Exercises
Computer exercises
Projects
Further reading
Chapter 12 Graph connectivity
12.1 Introduction
12.2 Cuts and separating sets
12.3 Blocks
12.4 Connectivity and edge connectivity
12.5 Menger's Theorem
12.5.1 The vertex form of Menger's Theorem
12.5.2 The edge form of Menger’s Theorem
12.6 Computing the connectivity of a graph
Exercises
Computer exercises
Projects
Further reading
Chapter 13 Planarity
13.1 Introduction
13.2 Properties of planar graphs
13.3 Which graphs are planar?
13.3.1 Contractions, subdivisions and graph minors
13.3.2 Kuratowski's characterisation of planar graphs
13.3.3 Wagner's characterisation of planar graphs
13.3.4 A planarity testing algorithm
13.4 The crossing number of a graph
13.5 Other parameters related to planarity
13.5.1 The rectilinear crossing number
13.5.2 The thickness of a graph
13.5.3 The coarseness of a graph
13.6 Embedding on surfaces other than the plane
13.6.1 The genus of a surface
13.6.2 The generalised crossing number of a graph
13.6.3 The genus of a graph
13.7 The Robertson-Seymour theorems
Exercises
Computer exercises
Projects
Further reading
Chapter 14 Graph colouring
14.1 Introduction
14.2 Vertex colouring
14.2.1 k-Colourability
14.2.2 Criticality and the chromatic number of a graph
14.2.3 Other bounds on the chromatic number of a graph
14.2.4 Computing good vertex colourings heuristically
14.2.5 An exact algorithm for vertex colouring
14.3 Edge colouring
14.3.1 The chromatic index of a graph
14.3.2 Criticality with respect to X'(G)
14.3.3 Computing the chromatic index of a graph
Exercises
Computer exercises
Projects
Further reading
Chapter 15 Oriented graphs
15.1 Introduction
15.2 Strong orientations
15.3 Tournaments
15.4 Higher-order rankings in tournaments
15.5 Almost traceable and almost hamiltonian orient digraphs
Exercises
Computer exercises
Projects
Further reading
PART 3 Topics in modern graph theory
Chapter 16 Domination in graphs
16.1 Introduction
16.2 The domination number
16.2.1 Minimal dominating sets
16.2.2 Bounds on the domination number
16.2.3 Vizing's Conjecture
16.2.4 Nordhaus-Gaddum type bounds
16.2.5 NP-completeness of the domination problem
16.2.6 A polynomial-time tree domination algorithm
16.2.7 The upper domination number
16.3 The independent domination number
16.3.1 The domination inequality chain
16.3.2 <γ,i>-graphs
16.3.3 Domination-perfect graphs
16.3.4 -graphs
16.3.5 Bounds for K(1, k)-free graphs
16.3.6 Bounds in terms of maximum degree
16.3.7 Bounds relating i and γ
16.3.8 Bounds relating i and n
16.3.9 Bounds for bipartite graphs
16.3.10 Bounds for trees
16.3.11 Bounds for cubic graphs
16.3.12 Bounds for regular graphs
16.3.13 Bounds for triangle-free graphs
16.3.14 Nordhaus-Gaddum type bounds
16.4 The irredundance number
16.4.1 Maximal irredundant sets
16.4.2 The domination inequality chain revisited
16.4.3 Irredundance perfect graphs
16.4.4 Bounds involving the minimum and maximum degrees
16.5 Total domination
16.5.1 Minimal total dominating sets
16.5.2 Bounds on the total domination number
16.5.3 Bounds for graphs with minimum degree at least two
16.5.4 Bounds for graphs with minimum degree at least three
16.5.5 Bounds for graphs with minimum degree at least four
16.5.6 A heuristic bound
16.5.7 Summary of bounds
16.5.8 The upper total domination number
16.5.9 Total domination edge critical graphs
Exercises
Computer exercises
Projects
Further reading
Chapter 17 Ramsey theory
17.1 Introduction
17.2 The classical two-colour Ramsey problem
17.3 Two-colour extensions
17.4 The multi-colour Ramsey problem
17.5 Multipartite Ramsey theory
17.6 Requirements other than that of a subgraph
Exercises
Computer exercises
Projects
Further reading
Chapter 18 Extremal graph theory
18.1 Introduction
18.2 Cycles in graphs
18.3 Turán's theorem
18.4 Zarankiewicz numbers
18.5 Framing numbers
18.5.1 On cliques and independent sets
18.5.2 On cliques and bicliques
18.6 Diameter two graphs of minimum size
18.7 Diameter two critical graphs of maximum size
Exercises
Further reading
Chapter 19 Graph enumeration
19.1 Counting labelled graphs
19.1.1 Labelled simple graphs of specified order and size
19.1.2 Labelled trees and rooted labelled trees
19.1.3 Genealogical registers
19.2 Counting unlabelled trees
19.2.1 Rooted trees
19.2.2 Trees that are not rooted
19.3 Pólya's enumeration theorem
19.3.1 Permutations
19.3.2 Permutation groups and (ordered) pair groups
19.3.3 The cycle index of a permutation group
19.3.4 The theorem in the context of graph enumeration
19.4 Using Pólya's theorem to enumerate graphs
19.4.1 Unlabelled graphs of specified order and size
19.4.2 Multigraphs of specified order, size and multiplicity
19.4.3 Unlabelled digraphs of specified order and size
Exercises
Computer exercises
Projects
Further reading
Chapter 20 The probabilistic method
20.1 Introduction
20.2 Ramsey theory
20.3 Linearity of expectation
20.3.1 Bipartite subgraphs
20.3.2 Hamiltonian paths
20.3.3 Independent sets
20.3.4 Dominating sets
20.4 Random graphs
20.4.1 Colourings
20.4.2 Lovász Local Lemma
Exercises
Projects
Further reading
Index
Subject index
Author index
توضیحاتی در مورد کتاب به زبان اصلی :
From the Back Cover
This textbook covers a diversity of topics in graph and network theory, both from a theoretical standpoint, and from an applied modelling point of view. Mathematica® is used to demonstrate much of the modelling aspects. Graph theory and model building tools are developed in tandem with effective techniques for solving practical problems via computer implementation. The book is designed with three primary readerships in mind. Individual syllabi or suggested sequences for study are provided for each of three student audiences: mathematics, applied mathematics/operations research, and computer science. In addition to the visual appeal of each page, the text contains an abundance of gems. Most chapters open with real-life problem descriptions which serve as motivation for the theoretical development of the subject matter. Each chapter concludes with three different sets of exercises. The first set of exercises are standard and geared toward the more mathematically inclined reader. Many of these are routine exercises, designed to test understanding of the material in the text, but some are more challenging. The second set of exercises is earmarked for the computer technologically savvy reader and offer computer exercises using Mathematica. The final set consists of larger projects aimed at equipping those readers with backgrounds in the applied sciences to apply the necessary skills learned in the chapter in the context of real-world problem solving. Additionally, each chapter offers biographical notes as well as pictures of graph theorists and mathematicians who have contributed significantly to the development of the results documented in the chapter. These notes are meant to bring the topics covered to life, allowing the reader to associate faces with some of the important discoveries and results presented. In total, approximately 100 biographical notes are presented throughout the book.
The material in this book has been organized into three distinct parts, each with a different focus. The first part is devoted to topics in network optimization, with a focus on basic notions in algorithmic complexity and the computation of optimal paths, shortest spanning trees, maximum flows and minimum-cost flows in networks, as well as the solution of network location problems. The second part is devoted to a variety of classical problems in graph theory, including problems related to matchings, edge and vertex traversal, connectivity, planarity, edge and vertex coloring, and orientations of graphs. Finally, the focus in the third part is on modern areas of study in graph theory, covering graph domination, Ramsey theory, extremal graph theory, graph enumeration, and application of the probabilistic method.
About the Author
Michael A. Henning is a research professor at the Department of Mathematics and Applied Mathematics, University of Johannesburg. Professor Henning's research interests are in graph theory and hypergraph theory. His favourite research topics are in domination theory in graphs and transversals in hypergraphs. Additionally, Michael Henning has coauthored Total Domination in Graphs (SMM), Tranversals in Linear Uniform Hypergraphs (DEVM 63), From Domination to Coloring (SBM), and has coedited several volumes published with Springer.
Jan H. van Vuuren is a professor of operations research at the Department of Industrial Engineering, Stellenbosch University. His research interests include combinatorial optimization over graphs, graph Ramsey theory, graph colouring problems, graph routing problems, and graph domination theory.