Groups of Prime Power Order

دانلود کتاب Groups of Prime Power Order

52000 تومان موجود

کتاب گروه های سفارش قدرت اولیه نسخه زبان اصلی

دانلود کتاب گروه های سفارش قدرت اولیه بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 8


توضیحاتی در مورد کتاب Groups of Prime Power Order

نام کتاب : Groups of Prime Power Order
عنوان ترجمه شده به فارسی : گروه های سفارش قدرت اولیه
سری : De Gruyter Expositions in Mathematics, 61
نویسندگان : ,
ناشر : De Gruyter
سال نشر : 2015
تعداد صفحات : 476
ISBN (شابک) : 9783110281453 , 9783110281484
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 3 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Content
List of definitions and notations
Preface
§ 145 p-groups all of whose maximal subgroups, except one, have derived subgroup of order ≤ p
§ 146 p-groups all of whose maximal subgroups, except one, have cyclic derived subgroups
§ 147 p-groups with exactly two sizes of conjugate classes
§ 148 Maximal abelian and minimal nonabelian subgroups of some finite two-generator p-groups especially metacyclic
§ 149 p-groups with many minimal nonabelian subgroups
§ 150 The exponents of finite p-groups and their automorphism groups
§ 151 p-groups all of whose nonabelian maximal subgroups have the largest possible center
§ 152 p-central p-groups
§ 153 Some generalizations of 2-central 2-groups
§ 154 Metacyclic p-groups covered by minimal nonabelian subgroups
§ 155 A new type of Thompson subgroup
§ 156 Minimal number of generators of a p-group, p > 2
§ 157 Some further properties of p-central p-groups
§ 158 On extraspecial normal subgroups of p-groups
§ 159 2-groups all of whose cyclic subgroups A, B with A ⋂ B ≠ {1} generate an abelian subgroup
§ 160 p-groups, p > 2, all of whose cyclic subgroups A, B with A ⋂ B ≠ {1} generate an abelian subgroup
§ 161 p-groups where all subgroups not contained in the Frattini subgroup are quasinormal
§ 162 The centralizer equality subgroup in a p-group
§ 163 Macdonald’s theorem on p-groups all of whose proper subgroups are of class at most 2
§ 164 Partitions and Hp-subgroups of a p-group
§ 165 p-groups G all of whose subgroups containing ∅G) as a subgroup of index p are minimal nonabelian
§ 166 A characterization of p-groups of class > 2 all of whose proper subgroups are of class ≤ 2
§ 167 Nonabelian p-groups all of whose nonabelian subgroups contain the Frattini subgroup
§ 168 p-groups with given intersections of certain subgroups
§ 169 Nonabelian p-groups G with minimal nonabelian for any two distinct maximal cyclic subgroups A, B of G
§ 170 p-groups with many minimal nonabelian subgroups, 2
§ 171 Characterizations of Dedekindian 2-groups
§ 172 On 2-groups with small centralizers of elements
§ 173 Nonabelian p-groups with exactly one noncyclic maximal abelian subgroup
§ 174 Classification of p-groups all of whose nonnormal subgroups are cyclic or abelian of type (p, p)
§ 175 Classification of p-groups all of whose nonnormal subgroups are cyclic, abelian of type (p, p) or ordinary quaternion
§ 176 Classification of p-groups with a cyclic intersection of any two distinct conjugate subgroups
§ 177 On the norm of a p-group
§ 178 p-groups whose character tables are strongly equivalent to character tables of metacyclic p-groups, and some related topics
§ 179 p-groups with the same numbers of subgroups of small indices and orders as in a metacyclic p-group
§ 180 p-groups all of whose noncyclic abelian subgroups are normal
§ 181 p-groups all of whose nonnormal abelian subgroups lie in the center of their normalizers
§ 182 p-groups with a special maximal cyclic subgroup
§ 183 p-groups generated by any two distinct maximal abelian subgroups
§ 184 p-groups in which the intersection of any two distinct conjugate subgroups is cyclic or generalized quaternion
§ 185 2-groups in which the intersection of any two distinct conjugate subgroups is either cyclic or of maximal class
§ 186 p-groups in which the intersection of any two distinct conjugate subgroups is either cyclic or abelian of type (p, p)
§ 187 p-groups in which the intersection of any two distinct conjugate cyclic subgroups is trivial
§ 188 p-groups with small subgroups generated by two conjugate elements
§ 189 2-groups with index of every cyclic subgroup in its normal closure ≤ 4
Appendix 45 Varia II
Appendix 46 On Zsigmondy primes
Appendix 47 The holomorph of a cyclic 2-group
Appendix 48 Some results of R. van der Waall and close to them
Appendix 49 Kegel’s theorem on nilpotence of Hp-groups
Appendix 50 Sufficient conditions for 2-nilpotence
Appendix 51 Varia III
Appendix 52 Normal complements for nilpotent Hall subgroups
Appendix 53 p-groups with large abelian subgroups and some related results
Appendix 54 On Passman’s Theorem 1.25 for p > 2
Appendix 55 On p-groups with the cyclic derived subgroup of index p²
Appendix 56 On finite groups all of whose p-subgroups of small orders are normal
Appendix 57 p-groups with a 2-uniserial subgroup of order p and an abelian subgroup of type (p, p)
Research problems and themes IV
Bibliography
Author index
Subject index




پست ها تصادفی