توضیحاتی در مورد کتاب :
این نسخه کاملاً اصلاح شده هندبوک فناوری دانه بندی دارویی، پیشرفت های سریع در علم تراکم، کنترل فرآیند، مدل سازی فرآیند، افزایش مقیاس، فناوری های نوظهور مهندسی ذرات، همراه با تغییرات نظارتی فعلی ارائه شده توسط برخی از دانشمندان برجسته و موضوع را پوشش می دهد. کارشناسان در سراسر جهان از بیش از 50 کارشناس موضوعی جهانی که سالها تجربه خود را در زمینه های مختلف از تحویل دارو و فناوری دارویی گرفته تا پیشرفت در فناوری نانو به اشتراک می گذارند، بیاموزید. هر دانشمند داروسازی باید نسخه ای از این منبع ویرایش چهارم را داشته باشد.
فهرست مطالب :
Cover
Half Title
Series Page
Title Page
Copyright Page
Dedication
Contents
Preface
Editor
Contributors
1. Introduction
1.1. Introduction
1.2. Need for Granulating Powders
1.3. Granulation Options
1.4. Developments in Processing Solid Dosage Forms
1.5. Scope of This Book
References
2. Theory of Granulation: An Engineering Perspective
2.1. Introduction
2.1.1. Overview
2.1.2. Granulation Mechanisms
2.1.3. Compaction Mechanisms
2.1.4. Formulation Versus Process Design
2.1.5. Key Historical Investigations
2.2. Wetting
2.2.1. Overview
2.2.2. Mechanics of the Wetting Rate Process
2.2.3. Methods of Measurement
2.2.4. Granulation Examples of Wetting
2.2.5. Regimes of Nucleation and Wetting
2.2.6. Example of Wetting Regime Calculation
2.3. Granule Growth and Consolidation
2.3.1. Mechanics of Growth and Consolidation
2.3.2. Interparticle Forces
2.3.3. Dynamic Wet Mass Rheology and Granule Deformability
2.3.4. Low-Shear, Low-Deformability Growth
a) Noninertial Regime
b) Inertial Regime
c) Coating Regime
2.3.5. High-Shear, Deformable Growth
2.3.6. Example: High-Shear Mixer Growth
2.3.7. Power, Deformability, and Scale-Up of Growth
2.3.8. Determination of Stokes number, (St*)
2.3.9. Summary of Growth Patterns
2.3.10. Granule Consolidation
2.4. Granule Strength and Breakage
2.4.1. Overview
2.4.2. Mechanics of the Breakage
2.4.3. Fracture Measurements
2.4.4. Mechanisms of Breakage
2.5. Controlling Granulation Processes
2.5.1. An Engineering Approach to Granulation Processes
2.5.2. Scale of a Granule Size and Primary Feed Particles
2.5.3. Scale of a Granule Volume Element
2.5.4. Scale of the Granulator Vessel
2.5.5. Controlling Processing in Practice
2.5.6. Controlling Wetting in Practice
2.5.7. Controlling Growth and Consolidation in Practice
2.5.8. Controlling Breakage in Practice
Acknowledgments
Notes
References
Section I: Particle Formation
3. Drug Substance and Excipient Characterization
3.1. Introduction
3.2. Particle Size, Shape, and Surface Area
3.2.1. Particle Size
3.2.1.1. Microscopy
3.2.1.2. Sieving
3.2.1.3. Sedimentation
3.2.1.4. Electrical Sensing
3.2.1.5. Laser Scattering, Light Obscuration, and Photon Correlation Spectroscopy
3.2.1.6. Time of Flight
3.2.1.7. Focused Beam Reflectance Measurement
3.2.1.8. Spatial Filtering Velocimetry
3.2.1.9. 3D Imaging Using Photometric Stereo Imaging
3.2.1.9.1. 3D surface imaging
3.2.1.9.2. 3D particle characterizer
3.2.1.10. Laser Scanning Microscopy
3.2.1.11. Continuous Manufacturing and Material Sampling
3.2.2. Particle Shape
3.2.3. Particle Surface Area
3.2.3.1. Gas Adsorption
3.2.3.2. Gas Permeability
3.3. Density
3.3.1. Bulk Density
3.3.2. Conditioned Bulk Density
3.3.3. Tap Density
3.3.4. True Density
3.4. Solubility
3.5. Crystallinity and Polymorphism
3.5.1. Dissolution Study
3.5.2. X-Ray Diffractometry
3.5.3. Thermal Analysis
3.5.4. Vibrational Spectroscopy
3.5.4.1. Infrared Spectroscopy
3.5.4.2. Raman Spectroscopy
3.5.5. Solid-State Nuclear Magnetic Resonance
3.5.6. Moisture Sorption
3.5.7. Hot Stage Microscopy
3.5.8. Detection Limits of Different Methods
3.6. Other Physical Properties
3.6.1. Flow Properties
3.6.1.1. Hausner Ratio and Carr Index
3.6.1.2. Angle of Repose
3.6.1.3. Angle of Slide
3.6.1.4. Flowability Determined by Shear Tests
3.6.1.5. Dynamic Flow Analysis
3.6.1.6. Avalanche Behavior [56]
3.6.2. Segregation
3.6.3. Tableting Properties
3.6.4. Sticking
3.6.5. Compatibility
3.6.5.1. Stability Study
3.6.5.2. Chromatography
3.6.5.3. Thermal Methods
3.6.5.4. Other Methods
3.6.6. Internal Structure Analysis
3.7. Conclusion
Abbreviations
Symbols
References
4. Binders in Pharmaceutical Granulation
4.1. Introduction
4.2. Commonly Used Binders in Current Pharmaceutical Practice
4.2.1. Hydroxypropylcellulose (HPC)
4.2.2. Methylcellulose (MC)
4.2.3. Hypromellose (HPMC)
4.2.4. Sodium Carboxymethyl Cellulose (NaCMC)
4.2.5. Povidone (PVP)
4.2.6. Copovidone (PVP-PVA)
4.2.7. Polyethylene Glycol (PEG)
4.2.8. Polyvinyl Alcohol (PVA)
4.2.9. Polymethacrylates
4.2.10. Starch and Modified Starches
4.2.10.1. Starch
4.2.11. Pregelatinized Starch (PGS)
4.2.12. Gum Acacia
4.3. Practical Considerations in Binder Selection and Use
4.3.1. Use Levels and Binder Efficiency
4.3.2. Stability and Compatibility
4.3.2.1. Aldehydes and Carboxylic Acids
4.3.2.2. Peroxides
4.3.3. Binder Hygroscopicity and Water Content
4.3.4. Wettability and Surface Energetics
4.3.5. Wetting Studies as Formulation Tools
4.4. The Role of Solvent
4.5. Thermal and Mechanical Properties
4.6. Regulatory Acceptance and Supplier Reliability
References
5. Excipients and Their Attributes in Granulation
5.1. Introduction
5.2. Why Granulate?
5.3. Processing Options
5.3.1. From API to Processable Blend to Finished Product
5.4. Excipient Selection
5.4.1. Excipients in Wet Granulation, by Functionality
5.4.1.1 Inorganic, Insoluble Excipients
5.4.1.2 Organic, Insoluble Excipients
5.4.1.3 Organic Soluble Excipients
5.4.1.4 Sugar Alcohols
5.4.1.5 Starches and Sugar
5.4.1.6 Synthetic and Naturally Derived Binders
5.4.1.7 Excipients for Nutraceuticals
5.5. High Functionality Co-Processed Excipients
5.6. Excipient Variability
5.7. Conclusions
Note
References
Additional Reading
6. Spray Drying and Pharmaceutical Applications
6.1. Introduction
6.1.1. Advantages and Limitation
6.2. Spray Drying Process Stages
6.2.1. Atomization
6.2.1.1. Atomizer Types and Designs
6.2.1.2. Droplet Formation Using Rotary Atomizer
6.2.1.3. Droplet Formation Using a Pneumatic Nozzle
6.2.2. Electrohydrodynamic Atomizers
6.2.2.1. Atomizer Selection
6.2.3. Spray Air Contact and Evaporation
6.2.3.1. Spray Air Contact
6.2.3.2. Drying
6.2.3.3. Drying Gas
6.2.4. Dried Powder Separation
6.3. Process Layouts
6.4. Theory of Spray Drying Fundamentals
6.4.1. Droplet Drying Mechanisms
6.4.2. Effect of Formulation on Droplet Drying Mechanisms
6.4.2.1. Pure Liquid Sprays
6.4.2.2. Feeds Containing Insoluble Solids
6.4.2.3. Feeds Containing Dissolved Solids
6.4.2.4. Spray Drying Parameters
6.5. Spray Drying Applications
6.5.1. Feasibility Assessments
6.5.2. Spray Drying to Produce a Specific Type of Particle
6.5.2.1. Granulation
6.5.2.2. Modification of Solid-State Properties
6.5.2.3. Microencapsulation
6.5.2.4. Inhalation and Nasal Dosage Forms
6.5.2.5. Liposomes
6.5.2.6. Peptides, Proteins, and Vaccines
6.5.2.7. Microparticles and Nanoparticles
6.5.2.8. Dry Elixirs and Emulsions
6.5.2.9. Effervescent Products
6.5.2.10. Other Process Variations
6.6. Advances in Spray Drying Technology
6.6.1. Electrostatic Spray Dryer
6.6.2. Aseptic Spray Dryer
6.6.3. Nanoscale Spray Dryers
6.7. Application of QbD/PAT to Spray Drying Process
Conclusion
Acknowledgment
References
7. Emerging Technologies for Particle Engineering
7.1. Introduction
7.2 Nanotechnology
7.2.1. Introduction
7.2.2. Manufacture of Nanoparticles
7.2.3. Nanosuspensions
7.2.4. Nanoparticulate Drug Delivery Systems for Proteins and Peptides
7.2.5. Pulmonary Drug Delivery
7.2.6. Drug Delivery
7.2.7. Adverse effects of Nanoparticles
7.2.8. Summary: Nanotechnology
7.3. Super Critical Fluid Technologies
7.3.1. Super Critical Fluid (SCF)
7.3.2. Rapid Expansion of Supercritical Solutions (RESS)
7.3.3. Direct Particle Production: Antisolvent Techniques
7.3.4. Supercritical Anti-Solvent (SAS)
7.3.5. Fluid-Assisted Microencapsulation
7.4. Three Dimensional Printing (3DP) or Additive Manufacturing (AM)
7.5. Artificial Intelligence (AI)
7.6. Other Approaches
7.6.1. Spray Drying Particle Engineering for Inhalation
7.6.2. Particle Replication in Non-Wetting Templates (PRINT)
7.6.3. Co-Crystallization
7.6.4. Liqui-Pellet
7.6.5. Microencapsulation Using Polylactic-co-Glycolic Acid (PLGA) [115]
7.6.6. Electrospinning
7.6.7. Microbiome-Based Therapeutics
7.7. Summary
References
Section II: Granulation Processes
8. Roller Compaction Technology
8.1. Introduction
8.2. Active Pharmaceutical Ingredient Powders
8.3. Granulation Technologies
8.3.1. Summary
8.4. Compaction Theory
8.5. Design Features of Roller Compactors
8.5.1. Deaeration Theory
8.6. Formulation Considerations
8.6.1. Compaction Formulation Technology Needs
8.7. Instrumented Roller Compactor Technology for Product Development, Design of Experiments, and Scale-Up
8.7.1. Technology and Physics Understanding
8.7.2. Instrumented Roll Technology for Roller Compaction Process Development and Scale-Up
8.7.3. Placebo Model
8.7.4. Application of Placebo Model to Predict Ribbon Densities of Active Blends
8.7.5. Effect of Deaeration on Normal Stress (P2) Measurements and Gap
8.7.6. Use of Instrumented Roll Technology for Scale-Up Using Modified Johanson Model
Note
References
9. Advances in Wet Granulation of Modern Drugs
9.1. Introduction
9.2. Small Molecule Drug Granulation
9.2.1. Low-Shear Granulators
a) Mechanical Agitator Granulators
b) Rotating-Shape Granulators
9.2.2. High-Shear granulators
a) Horizontal High-Shear Granulator
b) Vertical High-Shear Granulator
c) Single-Pot Granulators
9.2.3. Advanced Applications of Low- and High-Shear Wet Granulation
a) Moisture Activated Dry Granulation
b) Steam Granulation
c) Effervescent Granulation
d) Foam Granulation
e) Melt Granulation
f) Continuous Granulation
9.3. Granulation of Therapeutic Proteins
9.3.1. Protein Stability and Formulation Strategies
9.3.2. Slugging and Compaction of Freeze-Dried Powder
9.3.3. Spray Drying
9.3.4. Electrospray
9.3.5. Extrusion-Spheronization
9.4. Artificial Intelligence in Granulation
9.4.1. Application of AI in Twin-Screw Granulation
9.4.2. Application of AI in the Batch High-Shear Granulation Process
9.5. Conclusions
References
10. Fluid Bed Processing
10.1. Introduction
10.2. Fluidization Theory
10.2.1. Understanding the Particles
10.3. System Description
10.3.1. Air Handling Unit
10.3.2. Product Container and Air Distributor
10.3.3. Spray Nozzle
10.3.4. Disengagement Area and Process Filters
10.3.5. Exhaust Blower or Fan
10.3.6. Control System
10.3.7. Solution Delivery System
10.4. Cleaning Fluid Bed Processor
10.5. Particle Agglomeration and Granule Growth
10.6. Fluid Bed Drying
10.7. Granulation Process
10.8. Variables in Granulation
10.8.1. Formulation-Related Variables
10.8.1.1. Low-Dose Drug Content
10.8.1.2. Binder
10.8.1.3. Binder Solvent
10.8.2. Equipment-Related Variables
10.8.2.1. Equipment Design
10.8.2.2. Air-Distributor Plate
10.8.2.3. Fan (Blower) and Pressure Drop (ΔP)
10.8.2.4. Filters and Shaker/Blowback Cycle Mechanism
10.8.2.5. Other Miscellaneous Equipment Factors
10.8.3. Process-Related Variables
10.9. Fluidized Hot Melt Granulation (FHMG)
10.10. Process Controls and Automation
10.10.1. Advances in Process Control and Automation
10.10.1.1. Near-Infrared (NIR)
10.10.1.2. Other Approaches for Process Control
10.11. Process Scale-Up
10.11.1. Scale-Up and Equipment Design
10.11.2. Scale-Up and Process Factors
10.12. Process Troubleshooting
10.12.1. Metrics: Granule Properties and Tableting
10.12.2. Proactive Troubleshooting - Design of Experiments
10.12.3. Reactive Trouble Shooting: Acquired Data as a Process Troubleshooting Tool
10.12.4. Process Trouble Shooting Summary
10.13. Safety in Fluid Bed
10.14. Material Handling Options
10.14.1. Loading
10.14.2. Unloading
10.15. Optimization of Fluid Bed Granulation Process
10.16. Fluid Bed Technology Developments
10.17. Bottom Spray
10.18. Rotary Inserts
10.19. Integrated Systems
10.20. Continuous Granulation Systems
10.21. Conclusion
References
11. Single-Pot Processing
11.1. Introduction
11.2. Typical Single-Pot Process
11.2.1. Dry Mixing
11.2.2. Addition of Binder Solution
11.2.3. Wet Massing
11.2.4. Drying
11.2.5. Sizing and Lubrication
11.3. Drying Methods for Single-Pot Processors
11.3.1. Conductive Drying
11.3.2. Vacuum Drying
11.3.3. Gas-Assisted Vacuum Drying
11.3.4. Microwave Vacuum Drying
11.3.5. Fluid-Bed Drying
11.4. Applications
11.4.1. Main Applications
11.4.1.1. Expensive Products
11.4.1.2. Short Campaigns/Multiple Products
11.4.1.3. Highly Potent (Toxic) Products
11.4.1.4. Organic Solvent Processing
11.4.1.5. Effervescent Production
11.4.2. Other Applications
11.4.2.1. Melt Granulation
11.4.2.2. Pellet Production
11.4.2.3. Crystallization
11.5. Scale-Up of Drying Processes
11.6. Regulatory Considerations
11.7. Validation of Single-Pot Processors
11.8. Process Analytical Technology
11.9. Control Systems and Data Acquisition Systems
11.10. Conclusion
References
12. Extrusion/Spheronization as a Granulation Technique
12.1. Introduction
12.2. Applications
12.3. General Process Description
12.4. Equipment Description and Process Parameters
12.4.1. Dry Mixing
12.4.2. Granulation
12.4.3. Extrusion
12.4.4. Spheronization
12.4.5. Drying
12.5. Formulation Variables
12.6. Compression of Spherical Granules or Pellets
12.7. Summary
References
13. Continuous Granulation
13.1. Introduction: Continuous Processing of Solid Dosage Forms
13.2. Continuous Granulation
13.3. Continuous Fluid-Bed Granulators
13.4. Twin-Screw Granulation
13.4.1. Critical Process Parameters
13.4.2. Screw Configuration
13.4.3. Granulation Mechanism
13.4.4. Heat-Assisted Twin-Screw Granulation
13.5. Ring Layer Granulation
13.6. Downstream Processing and Integrated Manufacturing Lines
References
Section III: Product-Oriented Granulations
14. Effervescent Granulation
14.1. Introduction
14.2. The Effervescent Reaction
14.3. Formulation
14.4. Raw Materials
14.4.1. Acid Materials
14.4.1.1. Citric Acid
14.4.1.2. Tartaric Acid
14.4.1.3. Ascorbic Acid
14.4.1.4. Acid Anhydrides
14.4.1.5. Acid Salts
14.4.1.6. Other Less Frequent Sources of Acid
14.4.2. Sources of Carbon Dioxide
14.4.2.1. Sodium Bicarbonate
14.4.2.2. Sodium Carbonate
14.4.2.3. Potassium Bicarbonate and Potassium Carbonate
14.4.2.4. Calcium Carbonate
14.4.2.5. Sodium Glycine Carbonate
14.4.3. Binders
14.4.4. Lubricants
14.4.5. Additives
14.5. Manufacturing of Effervescent Forms
14.6. Granulation Methods
14.6.1. Granulation Technologies
14.6.1.1. Dry Blending of Powders
14.6.1.2. Dry Granulation
14.6.1.3. Wet Granulation
14.6.1.4. Wet Granulation According to Single-Step Method
14.6.1.4.1. Case Study
14.6.1.5. Hot-Melt Process
14.7. Conclusion
References
15. Granulation of Plant Products and Nutraceuticals
15.1. Introduction
15.2. Nutraceutical Market
15.3. Regulatory Landscape Around the World
15.4. Manufacture of Nutraceuticals
15.4.1. Preparation of Extract
15.4.2. Dosage Form Manufacturing Challenges
15.4.2.1. Sourcing and Standardization
15.4.2.2. Physicochemical Properties of Powdered Plants and Herbal Parts
15.4.2.3. Microbiological Issues
15.4.2.4. Quality Challenges
15.5. Formulation and Processing
15.5.1. Direct Compression
15.5.2. Spray Drying
15.5.3. Fluid-Bed Granulation
15.5.4. Roller Compaction
15.5.5. Wet Granulation
15.5.6. Nanotechnology
15.5.7. Cannabis and Cannabidiol (CBD) Processing
15.6. Storage and Stability
15.7. GMP and Nutraceuticals
15.7.1. Key Requirements of the Final Rule
15.8. Conclusion
References
16. Granulation Approaches for Modified-Release Products
16.1. Introduction
16.2. Scope
16.2.1. Establishment of a Target Product Profile (TPP)
16.3. Material Considerations
16.3.1. Drug Molecule or Active Pharmaceutical Ingredient (API)
16.3.2. Release-Modifying Ingredient(s)
16.3.2.1 Polymers
16.3.2.2 Long-Chain Hydrocarbons
16.3.3. Additional Formulation Ingredients
16.3.4. Compatibility of All Dosage Form Ingredients
16.4. Dosage Form Performance Considerations
16.4.1. Drug Release Mechanism
16.4.2. Drug Release Pattern and Predictability
16.4.3. Reproducibility of Drug Release Pattern
16.5. Types of MR Granulations and Case Studies
16.5.1. Case Study 1
16.5.2. Case Study 2
16.5.3. Case Study 3
16.4.4. Case Study 4
16.4.5. Case Study 5
16.5. Conclusions
Acknowledgments
References
17. Granulation of Poorly Water-Soluble Drugs
17.1. Introduction
17.2. Particle Reduction and Nanoparticles
17.3. Nanoparticles for Poorly Water-Soluble Drugs
17.4. Complexation
17.4.1. Background
17.4.2. Selection of Suitable Cyclodextrin and Determination of Stoichiometry
17.4.3. Complex Preparation Methods
17.4.3.1. Spray-Drying and Fluid-Bed Granulation
17.4.3.2. Kneading Process in High-Shear Mixer
17.4.3.3. Twin-Screw Kneading and Extrusion
17.4.3.4. Cogrinding
17.5. Solid Dispersions
17.5.1. Structures of Solid Dispersion
17.5.2 . Methods for Preparation of Amorphous Solid Dispersions
17.5.2.1. Hot-Melt Method
17.5.2.2. Solvent Evaporation Method
17.5.3. Carriers
17.5.3.1. Polyethylene Glycol
17.5.3.2. Polyvinylpyrrolidone and Polyvinylpyrrolidone-Polyvinyl Acetate Copolymer
17.5.3.3. Soluplus®
17.5.3.4. Cellulose Derivatives
17.5.3.5. Polyacrylates and Polymethacrylates
17.5.3.6. Surfactants
References
18. Granulation and Production Approaches of Orally Disintegrating Tablets
18.1. Descriptions of Orally Disintegrating Dosage Forms
18.2. Desired Properties of ODTs
18.3. The Need for the Development of Orally Disintegrating Tablets (ODTs) and Their Desired Properties
18.3.1. Patient Factors
18.3.2. Effectiveness Factor
18.3.3. Manufacturing Factors
18.4. Technologies Used in the Production of ODTs
18.4.1. Compaction Methods
18.4.1.1. Direct Compression Method
18.4.1.2. Wet Granulation
18.4.1.3. Dry Granulation
18.4.2. Phase Transition Method (Crystalline Transition Process)
18.4.3. Sublimation
18.4.4. Lyophilization (Freeze Drying)
18.4.5. Molding
18.4.6. Cotton Candy Process
18.4.7. Melt Granulation (Nanocrystal Technology/Nanomelt)
18.5. Challenges in Preparation of ODTs
18.5.1. Disintegration Period and Fragility
18.5.2. Masking the Drug's Taste
18.5.3. Formation of Eutectic Mixtures
18.5.4. Size of Tablet and Amount of Drug
18.5.5. Safe Packing
18.6. Formulation Approaches to Induce Fast Disintegration in ODTs Using Granulation Methods
18.6.1. Disintegrants and Binders
18.6.2. Superdisintegrants
18.6.3. Taste Masking Using Dry Granulation in ODT Development
18.6.4. Challenges in Selection of ODT Drug Candidates
18.7. Characterization of ODTs Prepared by Granulation Technology
18.7.1. Wetting Time
18.7.2. Disintegration Test
18.7.3. Dissolution Test
18.7.4. Moisture Uptake Studies
18.8. Future Prospects
References
19. Melt Granulation
19.1. Introduction
19.2. Batch Melt Granulation
19.2.1. High-Shear Granulation
19.2.2. Fluidized Bed Granulation
19.2.3. Melt Pelletization
19.2.4. Tumbling Melt Granulation
19.3. Continuous Melt Granulation
19.3.1. Spray Congealing
19.3.2. Prilling
19.3.3. Melt Extrusion
19.3.4. Twin-Screw Melt Granulation
19.4. Formulation and Process Selection for Melt Granulation
References
Section IV: Characterization and Scale-UP
20. Sizing of Granulation
20.1. Introduction
20.2. Theory of Comminution or Size Reduction
20.3. Properties of Feed Materials Affecting the Sizing Process
20.4. Criteria for Selection of a Mill
20.5. Classification of Mills
20.5.1. Low-Energy Mills
20.5.1.1 Hand Screen
20.5.1.2 Oscillating or Rotary Granulator Mills
20.5.1.3 Low-Pressure Extruders
20.5.2. High-Energy Mills
20.5.2.1. Hammer Mill
20.5.2.2. Conical-Screening Mill
20.5.2.3. Centrifugal-Sifter Mills
20.6. Wet Milling
20.7. Variables Affecting the Sizing Process
20.7.1. Process Variables
20.7.2. Equipment Variables (Type of Mill)
20.7.2.1 Hammer Mill
20.7.2.2 Conical-Screening Mill
20.7.2.3 Hybrid Designs
20.7.3. Other Variables
20.8. Scale-Up
20.8.1. Hammer Mill
20.8.2. Conical-Screening Mill
20.9. Case Studies
20.9.1. Comparison of Fitzmill Variables
20.9.2. Comparison of Fitzmill vs. Comil
20.9.3. Comparison of Hand Screen vs. Comil
20.9.4. Modeling
20.9.5. Scale-Up and Post -Approval Changes (SUPAC: Manufacturing Equipment Addendum)
Acknowledgments
References
List of Equipment Suppliers
21. Granulation Characterization
21.1. Introduction
21.2. Definitions
21.3. Granulation Structural Characterization
21.3.1. Molecular Level
21.3.1.1. Amorphous Transitions
21.3.1.2. Fusion Form Transitions
21.3.1.3. Polymer Transitions
21.3.1.4. Moisture Level and Location
21.3.2. Surface
21.3.3. Granular Level Characterization
21.3.3.1. Granule Physical Structure
21.3.3.2. Granule Density and Porosity
21.3.4. Granulation Level Characterization
21.4. Granulation Performance
21.4.1. Granulation Flowability
21.4.2. Granulation Deformation Strength
21.4.3. High-Pressure Characterization
21.4.3.1. Plastic Deformation
21.4.3.2. Repack and Deformation
21.4.3.3. Focus on Granulation Surface
21.4.4. Granulation Surface Area
21.4.4.1. Granule Size and Size Distribution
21.4.5. Equivalent Diameters
21.4.5.1. Sieve Analysis
21.4.6. Granulation Shape
21.5. Active Principle Characterization
21.5.1. Crystallinity and Polymorphism
21.5.2. Hydrates
21.5.3. API Uniformity
References
22. Bioavailability and Granule Properties
22.1. Introduction
22.2. Drug Dissolution
22.3. Bioavailability Parameters
22.3.1. Peak Time (tmax)
22.3.2. Peak Plasma Concentration (Cp)max
22.3.3. Area Under the Plasma Concentration-Time Curve (AUC)0∞
22.4. Factors Affecting the Bioavailability
22.5. Dissolution and Granule Properties
22.6. In Vitro-In Vivo Correlation
22.6.1. Definitions
United States Pharmacopoeia (USP) definition
Food and Drug Administration (FDA) definition
22.6.2. Correlation Levels
22.6.3. Level A Correlation
22.6.4. Level B Correlation
22.6.5. Level C Correlation
22.6.5.1. Multiple Level C Correlation
22.6.6. Level D Correlation
22.6.7. Systematic Development of a Correlation
22.6.7.1. Important Considerations in Developing a Correlation
22.7. Biopharmaceutics Classification System (BCS)
22.7.1. Absorption Number (An)
22.7.2. Dissolution Number (Dn)
22.7.3. Dose Number (Do)
22.8. Summary
References
RECOMMENDED READING
23. Granulation Process Modeling
23.1. Modeling of Granulation Systems
23.1.1. Motivation for Modeling
23.1.1.1. Benefits
23.1.1.2. Costs
23.1.2. Process Modeling Fundamentals
23.1.2.1. A Systems Perspective
23.1.2.2. Modeling Methodology and Workflow
23.1.2.3. The Modeling Goal
23.1.2.4. System Optimization
23.1.2.5. Process Control
23.1.3. Approaches to Modeling
23.1.3.1. Empirical or Black Box Methods
23.1.3.2. Mechanistic and Gray Box Models
23.1.4. Quality-by-Design Approach
23.2. Key Factors in Granulation Modeling
23.2.1. Conservation Principles
23.2.2. The Principal Constitutive Mechanisms
23.2.2.1. Nucleation
23.2.2.2. Growth
23.2.2.3. Breakage
23.3. Representing Granulation Processes Through Population Balances
23.3.1. General Population Balance Equations
23.3.2. One-Dimensional Population Balance Models
23.3.2.1. Batch Systems
23.3.2.2. Continuous Systems
23.3.2.3. Coalescence Kernels
23.3.3. Multidimensional Population Balance Models
23.3.3.1. Two-Dimensional Population Balance Models
23.3.3.2. Higher-Dimensional Population Balance Models
23.3.4. Reduced-Order Models
23.3.4.1. Reduced-Order Models Using the Concept of Lumped Regions in Series
23.3.4.2. Model Order Reduction for Multidimensional Population Balances
23.3.4.3. Reduced-Order Models Using the Method of Moments
23.3.4.4. Multi Timescale Analysis
23.3.4.5. Regime Separated Approach
23.3.5. A Multiform Modeling Approach
23.3.6. Hybrid Models
23.3.6.1. Population Balance Model (PBM) Coupled with Discrete Element Method (DEM)
23.3.6.2. Population Balance Model (PBM) Coupled with Computational Fluid Dynamics (CFD)
23.4. Solving Population Balances
23.4.1. Conventional Discretization Methods
23.4.2. Wavelet-Based Methods
23.4.3. Hierarchical Two-Tier Technique
23.4.4. Solving Differential-Algebraic Equation Systems
23.4.5. Monte Carlo Methods
23.4.5.1. Classification of Monte Carlo Methods
23.4.5.2. Key Equations for Constant Number Monte Carlo Simulation
23.4.5.3. Simulation Procedure
23.5. Application of Population Balance Modeling
23.5.1. Modeling for Closed-Loop Control Purposes
23.5.1.1. Development of Control Relevant, Linear Models
23.5.1.2. ARX and ARMAX Models for Linear Model Predictive Control
23.5.1.3. Linear Model Predictive Control
23.5.1.4. Nonlinear Model Predictive Control Structure
23.5.1.5. Online Measurement-Based Control Schemes
23.5.2. Modeling for Optimal Design, Operation, and Open-Loop Optimal Control
23.5.2.1. Statement of Optimization and Open-Loop Optimal Control Problems
23.5.2.2. Optimization and Open-Loop Optimal Control Equations
23.5.2.3. Dynamic Optimization Algorithm
23.5.2.4. Selected Simulation Results and Discussion
23.5.3. Sensitivity and Reliability Analysis
23.5.3.1. Sensitivity Analysis for Application of Multidimensional Models
23.5.3.2. Reliability Analysis for Model Failure Diagnosis
23.6. Summary
References
24. Scale-Up Considerations in Granulation
24.1. Introduction
24.2. General Considerations in Process Scale-Up: Dimensional Analysis and the Principle of Similarity
24.3. Analysis of Granulation Rate Processes
24.3.1. Wetting and Nucleation
24.3.2. Growth and Consolidation
24.3.3. Breakage and Attrition
24.4. Implications for Scale-Up
24.5. Scale-Down, Formulation Characterization, and Formulation Design in Pharmaceutical Granulation
24.6. Scale-Up of Fluidized-Bed Granulators
24.6.1. Bed Hydrodynamics and Scale-Up
24.6.2. Granulation Rate Processes in Fluidized Beds
24.6.3. Suggested Scaling Rules for Fluid-Bed Granulators
24.7. Scale-Up of High-Mixer Granulators
24.7.1. Geometric Scaling Issues
24.7.2. Powder Flow Patterns and Scaling Issues
24.7.3. Granulation Rate Processes and Related Scaling Issues
24.7.4. Recommended Scaling Rules for High-Shear Mixer Granulators and Case Study Examples
24.8. Scale-Up of Twin-Screw Granulators
24.8.1. Characteristics of TSG Processes
24.8.2. Granulation Rate Processes and the Scaling Issues of TSGs
24.8.3. Suggested Scaling Rules for TSGs
24.9. Concluding Remarks
Nomenclature
References
25. Advances in Process Controls and End-Point Determination
25.1. Introduction
25.2. Roller Compaction
25.3. Fluid-Bed Granulation
25.4. Dense-Phase Wet Granulation
25.5. Twin-Screw Wet Granulation
25.6. Emerging Approaches
25.6.1. Surface Chemistry and Energetics in Granulation
25.6.2. Measurements and Controls
References
Section V: Optimization Strategies,Tools, and Regulatory Considerations
26. Use of Artificial Intelligence and Expert Systems in Pharmaceutical Applications
26.1. Introduction
26.2. Building an Expert System
26.2.1. Who Is a Domain Expert?
26.2.2. Who Is a Knowledge Engineer?
26.2.3. Who Is the End-User?
26.2.3.1. Why Build an Expert System?
26.2.3.2. Phases of an Expert System Development Process
26.2.4. Feasibility Study
26.2.5. Conceptualization and Acquisition of the Knowledge
26.2.6. Design of the Expert System
26.2.7. Implementation, Testing the Modules and Development of the Prototype, and Troubleshooting of the Final Program
26.2.8. Verification and Validation (V&V) of an Expert System
26.2.9. Training of Users
26.2.10. Maintenance and Upgrade of the Program
26.2.11. Manage Expectations
26.2.11.1. Expert System Components
26.2.12. Knowledge Base
26.2.13. Working Memory
26.2.14. Inference Engine
26.2.15. Explanation Facility
26.2.16. User interface
26.2.16.1. Knowledge Representation
26.2.17. Object-Attribute-Value Triplets
26.2.18. Semantic Networks
26.2.19. Frames
26.2.20. Fuzzy Logic
26.2.21. Rule-Based Systems
26.2.22. Artificial Neural Networks
26.2.23. Genetic Algorithms (GA)
26.2.24. Other Methods of Knowledge Representation
26.2.25. Hybrid Systems
26.3. An Example to Expert Systems: SPRAYex, a Spray-Drying Expert System
26.3.1. Spray-Drying Feasibility Decision Trees
26.3.2. Prediction of Optimum Spray-Drying Conditions
26.3.3. Mathematical Modeling and Database
26.4. Pharmaceutical Applications of Expert Systems
26.5. Conclusion
Acknowledgment
Note
References
27. Regulatory Issues in Granulation: Leading Next-Generation Manufacturing
27.1. Introduction
27.2. Pharmaceutical Quality Management
27.2.1. Current Good Manufacturing Practices
27.2.2. International Council for Harmonization
27.2.3. ISO 9000 Standards
27.3. Manufacturing Science
27.3.1. Regulatory Outlook
27.4. Process Analytical Technology
27.5. Quality Risk Management
27.6. Continuous Manufacturing
27.7. Data Integrity
27.8. Postapproval Change Considerations
27.8.1. Component and Composition Changes
27.8.1.1. Level 1 Changes
27.8.1.2. Level 2 Changes
27.8.1.3. Level 3 Changes
27.8.2. Site Changes
27.8.3. Changes in Batch Size
27.8.4. Manufacturing Equipment/Process Changes
27.8.5. Modified-Release Solid Dosage Forms
27.8.6. Changes to Granulation Equipment
27.9. International Change Notification
27.10. Life Cycle Management
27.11. Validation of Granulation Processes
27.11.1. Equipment/Utilities Qualification
27.11.2. Performance Qualification
27.11.3. Computer Validation
27.11.4. Current Guidance for Process Validation
References
28. QbD and PAT in Granulation
28.1. Introduction
28.2. Definition and Objectives of Quality by Design
28.3. Phases and Elements of Quality by Design (QbD)
28.3.1. Definition of Quality Target Product Profile (QTPP)
28.3.2. Determination of Critical Quality Attributes (CQAs)
28.3.3. Risk Assessment of Material Attributes (MAs) and Process Parameters (PPs)
28.3.3.1. Risk Assessment of Dry Mixing-Blending Process
28.3.3.2. Risk Assessment of Dry Granulation-Roller Compaction Process
28.3.3.3. Risk Assessment of High-Shear Wet Granulation Process
28.3.3.4. Risk Assessment of Fluid Bed Granulation Process
28.3.3.5. Risk Assessment of Extrusion-Spheronization Process
28.3.4. Designing of Experiments (DoE) and Development of Design Space
28.3.4.1. Definition of Objective and Selection of Designs
28.3.4.2. Types of Regression Models for Analysis of Responses
28.3.4.3. Analysis of Regression Model with Numerical and Graphical Indicators
28.3.4.4. Numerical and Graphical Optimization for Development of Design Space
28.3.4.5. Verification of Design Space concerning Prediction Intervals (PI) and Confidence Interval (CI)
28.3.5. Implementation of Control Strategy
28.3.6. Continuous Improvement and Process Capability
28.4. PAT Definition and Goals
28.5. PAT Phases and Tools
28.5.1. Designing Phase with Multivariate Tools for Design, Data Acquisition, and Analysis
28.5.2. Analysis Phase with Process Analyzers
28.5.3. Controlling Phase and Process Control Tools
28.6. Applications of QbD and PAT
28.7. Summary and Conclusion
References
Abbreviations Used in the Chapter
Index
توضیحاتی در مورد کتاب به زبان اصلی :
This fully revised edition of Handbook of Pharmaceutical Granulation Technology covers the rapid advances in the science of agglomeration, process control, process modelling, scale-up, emerging particle engineering technologies, along with current regulatory changes presented by some of the prominent scientist and subject matter experts around the globe. Learn from more than 50 global subject matter experts who share their years of experience in areas ranging from drug delivery and pharmaceutical technology to advances in nanotechnology. Every pharmaceutical scientist should own a copy of this fourth edition resource.