توضیحاتی در مورد کتاب Handbook of physics
نام کتاب : Handbook of physics
عنوان ترجمه شده به فارسی : کتاب راهنمای فیزیک
سری :
نویسندگان : Walter Benenson, John Harris, Horst Stöcker, Holger Lutz
ناشر : Springer
سال نشر : 2006
تعداد صفحات : 1183
ISBN (شابک) : 9780387952697 , 8181284569
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 24 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Handbook of Physycs
Preface
Contents
Contributors
Part I - Mechanics
1 Kinematics
1.1 Description of motion
1.1.1 Reference systems
1.1.2 Time
1.1.3 Length, area, volume
1.1.4 Angle
1.1.5 Mechanical systems
1.2 Motion in one dimension
1.2.1 Velocity
1.2.2 Acceleration
1.2.3 Simple motion in one dimension
1.3 Motion in several dimensions
1.3.1 Velocity vector
1.3.2 Acceleration vector
1.3.3 Free-fall and projectile motion
1.4 Rotational motion
1.4.1 Angular velocity
1.4.2 Angular acceleration
1.4.3 Orbital velocity
2 Dynamics
2.1 Fundamental laws of dynamics
2.1.1 Mass and momentum
2.1.2 Newton’s laws
2.1.3 Orbital angular momentum
2.1.4 Torque
2.1.5 The fundamental law of rotational dynamics
2.2 Forces
2.2.1 Weight
2.2.2 Spring torsion forces
2.2.3 Frictional forces
2.3 Inertial forces in rotating reference systems
2.3.1 Centripetal and centrifugal forces
2.3.2 Coriolis force
2.4 Work and energy
2.4.1 Work
2.4.2 Energy
2.4.3 Kinetic energy
2.4.4 Potential energy
2.4.5 Frictional work
2.5 Power
2.5.1 Efficiency
2.6 Collision processes
2.6.1 Elastic straight-line central collisions
2.6.2 Elastic off-center central collisions
2.6.3 Elastic non-central collision with a body at rest
2.6.4 Inelastic collisions
2.7 Rockets
2.7.1 Thrust
2.7.2 Rocket equation
2.8 Systems of point masses
2.8.1 Equations of motion
2.8.2 Momentum conservation law
2.8.3 Angular momentum conservation law
2.8.4 Energy conservation law
2.9 Lagrange’s and Hamilton’s equations
2.9.1 Lagrange’s equations and Hamilton’s principle
2.9.2 Hamilton’s equations
3 Rigid bodies
3.1 Kinematics
3.1.1 Density
3.1.2 Center of mass
3.1.3 Basic kinematic quantities
3.2 Statics
3.2.1 Force vectors
3.2.2 Torque
3.2.3 Couples
3.2.4 Equilibrium conditions of statics
3.2.5 Technical mechanics
3.2.6 Machines
3.3 Dynamics
3.4 Moment of inertia and angular momentum
3.4.1 Moment of inertia
3.4.2 Angular momentum
3.5 Work, energy and power
3.5.1 Kinetic energy
3.5.2 Torsional potential energy
3.6 Theory of the gyroscope
3.6.1 Tensor of inertia
3.6.2 Nutation and precession
3.6.3 Applications of gyroscopes
4 Gravitation and the theory of relativity
4.1 Gravitational field
4.1.1 Law of gravitation
4.1.2 Planetary motion
4.1.3 Planetary system
4.2 Special theory of relativity
4.2.1 Principle of relativity
4.2.2 Lorentz transformation
4.2.3 Relativistic effects
4.2.4 Relativistic dynamics
4.3 General theory of relativity and cosmology
4.3.1 Stars and galaxies
5 Mechanics of continuous media
5.1 Theory of elasticity
5.1.1 Stress
5.1.2 Elastic deformation
5.1.3 Plastic deformation
5.2 Hydrostatics, aerostatics
5.2.1 Liquids and gases
5.2.2 Pressure
5.2.3 Buoyancy
5.2.4 Cohesion, adhesion, surface tension
5.3 Hydrodynamics, aerodynamics
5.3.1 Flow field
5.3.2 Basic equations of ideal flow
5.3.3 Real flow
5.3.4 Turbulent flow
5.3.5 Scaling laws
5.3.6 Flow with density variation
6 Nonlinear dynamics, chaos and fractals
6.1 Dynamical systems and chaos
6.1.1 Dynamical systems
6.1.2 Conservative systems
6.1.3 Dissipative systems
6.2 Bifurcations
6.2.1 Logistic mapping
6.2.2 Universality
6.3 Fractals
Formula symbols used in mechanics
7 Tables on mechanics
7.1 Density
7.1.1 Solids
7.1.2 Fluids
7.1.3 Gases
7.2 Elastic properties
7.3 Dynamical properties
7.3.1 Coefficients of friction
7.3.2 Compressibility
7.3.3 Viscosity
7.3.5 Surface tension
Part II - Vibrations and Waves
8 Vibrations
8.1 Free undamped vibrations
8.1.1 Mass on a spring
8.1.2 Standard pendulum
8.1.3 Physical pendulum
8.1.4 Torsional vibration
8.1.5 Liquid pendulum
8.1.6 Electric circuit
8.2 Damped vibrations
8.2.1 Friction
8.2.2 Damped electric oscillator circuit
8.3 Forced vibrations
8.4 Superposition of vibrations
8.4.1 Superposition of vibrations of equal frequency
8.4.2 Superposition of vibrations of different frequencies
8.4.3 Superposition of vibrations in different directions and with different frequencies
8.4.4 Fourier analysis, decomposition into harmonics
8.5 Coupled vibrations
9 Waves
9.1 Basic features of waves
9.2 Polarization
9.3 Interference
9.3.1 Coherence
9.3.2 Interference
9.3.3 Standing waves
9.3.4 Waves with different frequencies
9.4 Doppler effect
9.4.1 Mach waves and Mach shock waves
9.5 Refraction
9.6.1 Phase relations
9.7 Dispersion
9.8 Diffraction
9.8.1 Diffraction by a slit
9.8.2 Diffraction by a grating
9.9 Modulation of waves
9.10 Surface waves and gravity waves
10 Acoustics
10.1 Sound waves
10.1.1 Sound velocity
10.1.2 Parameters of sound
10.1.3 Relative quantities
10.2 Sources and receivers of sound
10.2.1 Mechanical sound emitters
10.2.2 Electro-acoustic transducers
10.2.3 Sound absorption
10.2.4 Sound attenuation
10.2.5 Flow noise
10.3 Ultrasound
10.4 Physiological acoustics and hearing
10.4.1 Perception of sound
10.4.2 Evaluated sound levels
10.5 Musical acoustics
11 Optics
11.1 Geometric optics
11.1.1 Optical imaging—fundamental concepts
11.1.2 Reflection
11.1.3 Refraction
11.2 Lenses
11.2.1 Thick lenses
11.2.2 Thin lenses
11.3 Lens systems
11.3.1 Lenses with diaphragms
11.3.2 Image defects
11.4 Optical instruments
11.4.1 Pinhole camera
11.4.2 Camera
11.4.3 Eye
11.4.4 Eye and optical instruments
11.5 Wave optics
11.5.1 Scattering
11.5.2 Diffraction and limitation of resolution
11.5.3 Refraction in the wave picture
11.5.4 Interference
11.5.5 Diffractive optical elements
11.5.6 Dispersion
11.5.7 Spectroscopic apparatus
11.5.8 Polarization of light
11.6 Photometry
11.6.1 Photometric quantities
11.6.2 Photometric quantities
Symbols used in formulae on vibrations, waves, acoustics and optics
12 Tables on vibrations, waves, acoustics and optics
12.1 Tables on vibrations and acoustics
12.2 Tables on optics
Part III - Electricity
13 Charges and currents
13.1 Electric charge
13.1.1 Coulomb’s law
13.2 Electric charge density
13.3 Electric current
13.3.1 Ampere’s law
13.4 Electric current density
13.4.1 Electric current flow field
13.5 Electric resistance and conductance
13.5.1 Electric resistance
13.5.2 Electric conductance
13.5.3 Resistivity and conductivity
13.5.4 Mobility of charge carriers
13.5.5 Temperature dependence of the resistance
13.5.6 Variable resistors
13.5.7 Connection of resistors
14 Electric and magnetic fields
14.1 Electric field
14.2 Electrostatic induction
14.2.1 Electric field lines
14.2.2 Electric field strength of point charges
14.3 Force
14.4 Electric voltage
14.5 Electric potential
14.5.1 Equipotential surfaces
14.5.2 Field strength and potential of various charge distributions
14.5.3 Electric flux
14.5.4 Electric displacement in a vacuum
14.6 Electric polarization
14.6.1 Dielectric
14.7 Capacitance
14.7.1 Parallel-plate capacitor
14.7.2 Parallel connection of capacitors
14.7.3 Series connection of capacitors
14.7.4 Capacitance of simple arrangements of conductors
14.8 Energy and energy density of the electric field
14.9 Electric field at interfaces
14.10 Magnetic field
14.11 Magnetism
14.11.1 Magnetic field lines
14.12 Magnetic flux density
14.13 Magnetic flux
14.14 Magnetic field strength
14.15 Magnetic potential difference and magnetic circuits
14.15.1 Ampere’s law
14.15.2 Biot-Savart’s law
14.15.3 Magnetic field of a rectilinear conductor
14.15.4 Magnetic fields of various current distributions
14.16 Matter in magnetic fields
14.16.1 Diamagnetism
14.16.2 Paramagnetism
14.16.3 Ferromagnetism
14.16.4 Antiferromagnetism
14.16.5 Ferrimagnetism
14.17 Magnetic fields at interfaces
14.18 Induction
14.18.1 Faraday’s law of induction
14.18.2 Transformer induction
14.19 Self-induction
14.19.1 Inductances of geometric arrangements of conductors
14.19.2 Magnetic conductance
14.20 Mutual induction
14.20.1 Transformer
14.21 Energy and energy density of the magnetic field
14.22 Maxwell’s equations
14.22.1 Displacement current
14.22.2 Electromagnetic waves
14.22.3 Poynting vector
15 Applications in electrical engineering
15.1 Direct-current circuit
15.1.1 Kirchhoff’s laws for direct-current circuit
15.1.2 Resistors in a direct-current circuit
15.1.3 Real voltage source
15.1.4 Power and energy in the direct-current circuit
15.1.5 Matching for power transfer
15.1.6 Measurement of current and voltage
15.1.7 Resistance measurement by means of the compensation method
15.1.8 Charging and discharging of capacitors
15.1.9 Switching the current on and off in a RL-circuit
15.2 Alternating-current circuit
15.2.1 Alternating quantities
15.2.2 Representation of sinusoidal quantities in a phasor diagram
15.2.3 Calculation rules for phasor quantities
15.2.4 Basics of alternating-current engineering
15.2.5 Basic components in the alternating-current circuit
15.2.6 Series connection of resistor and capacitor
15.2.7 Parallel connection of a resistor and a capacitor
15.2.8 Parallel connection of a resistor and an inductor
15.2.9 Series connection of a resistor and an inductor
15.2.10 Series-resonant circuit
15.2.11 Parallel-resonant circuit
15.2.12 Equivalence of series and parallel connections
15.2.13 Radio waves
15.3 Electric machines
15.3.1 Fundamental functional principle
15.3.2 Direct-current machine
15.3.3 Three-phase machine
16 Current conduction in liquids, gases and vacuum
16.1 Electrolysis
16.1.1 Amount of substance
16.1.2 Ions
16.1.3 Electrodes
16.1.4 Electrolytes
16.1.5 Galvanic cells
16.1.6 Electrokinetic effects
16.2 Current conduction in gases
16.2.1 Non-self-sustained discharge
16.2.2 Self-sustained gaseous discharge
16.3 Electron emission
16.3.1 Thermo-ionic emission
16.3.2 Photo emission
16.3.3 Field emission
16.3.4 Secondary electron emission
16.4 Vacuum tubes
16.4.1 Vacuum-tube diode
16.4.2 Vacuum-tube triode
16.4.3 Tetrode
16.4.4 Cathode rays
16.4.5 Channel rays
17 Plasma physics
17.1 Properties of a plasma
17.1.1 Plasma parameters
17.1.2 Plasma radiation
17.1.3 Plasmas in magnetic fields
17.1.4 Plasma waves
17.2 Generation of plasmas
17.2.1 Thermal generation of plasma
17.2.2 Generation of plasma by compression
17.3 Energy production with plasmas
17.3.1 MHD generator
17.3.2 Nuclear fusion reactors
17.3.3 Fusion with magnetic confinement
17.3.4 Fusion with inertial confinement
Symbols used in formulae on electricity and plasma physics
18 Tables on electricity
18.1 Metals and alloys
18.1.1 Specific electric resistance
18.1.2 Electrochemical potential series
18.2 Dielectrics
18.3 Practical tables of electric engineering
18.4 Magnetic properties
18.5 Ferromagnetic properties
18.5.1 Magnetic anisotropy
18.6 Ferrites
18.7 Antiferromagnets
18.8 Ion mobility
Part IV - Thermodynamics
19 Equilibrium and state variables
19.1 Systems, phases and equilibrium
19.1.1 Systems
19.1.2 Phases
19.1.3 Equilibrium
19.2 State variables
19.2.1 State property definitions
19.2.2 Temperature
19.2.3 Pressure
19.2.4 Particle number, amount of substance and Avogadro number
19.2.5 Entropy
19.3 Thermodynamic potentials
19.3.1 Principle of maximum entropy—principle of minimum energy
19.3.2 Internal energy as a potential
19.3.3 Entropy as a thermodynamic potential
19.3.4 Free energy
19.3.5 Enthalpy
19.3.6 Free enthalpy
19.3.7 Maxwell relations
19.3.8 Thermodynamic stability
19.4 Ideal gas
19.4.1 Boyle-Mariotte law
19.4.2 Law of Gay-Lussac
19.4.3 Equation of state
19.5 Kinetic theory of the ideal gas
19.5.1 Pressure and temperature
19.5.2 Maxwell–Boltzmann distribution
19.5.3 Degrees of freedom
19.5.4 Equipartition law
19.5.5 Transport processes
19.6 Equations of state
19.6.1 Equation of state of the ideal gas
19.6.2 Equation of state of real gases
19.6.3 Equation of states for liquids and solids
20 Heat, conversion of energy and changes of state
20.1 Energy forms
20.1.1 Energy units
20.1.2 Work
20.1.3 Chemical potential
20.1.4 Heat
20.2 Energy conversion
20.2.1 Conversion of equivalent energies into heat
20.2.2 Conversion of heat into other forms of energy
20.2.3 Exergy and anergy
20.3 Heat capacity
20.3.1 Total heat capacity
20.3.2 Molar heat capacity
20.3.3 Specific heat capacity
20.4 Changes of state
20.4.1 Reversible and irreversible processes
20.4.2 Isothermal processes
20.4.3 Isobaric processes
20.4.4 Isochoric processes
20.4.5 Adiabatic (isentropic) processes
20.4.6 Equilibrium states
20.5 Laws of thermodynamics
20.5.1 Zeroth law of thermodynamics
20.5.2 First law of thermodynamics
20.5.3 Second law of thermodynamics
20.5.4 Third law of thermodynamics
20.6 Carnot cycle
20.6.1 Principle and application
20.6.2 Reduced heat
20.7 Thermodynamic machines
20.7.1 Right-handed and left-handed processes
20.7.2 Heat pump and refrigerator
20.7.3 Stirling cycle
20.7.4 Steam engine
20.7.5 Open systems
20.7.6 Otto and Diesel engines
20.7.7 Gas turbines
20.8 Gas liquefaction
20.8.1 Generation of low temperatures
20.8.2 Joule–Thomson effect
21 Phase transitions, reactions and equalizing of heat
21.1 Phase and state of aggregation
21.1.1 Phase
21.1.2 Aggregation states
21.1.3 Conversions of aggregation states
21.1.4 Vapor
21.2 Order of phase transitions
21.2.1 First-order phase transition
21.2.2 Second-order phase transition
21.2.3 Lambda transitions
21.2.4 Phase-coexistence region
21.2.5 Critical indices
21.3 Phase transition and Van der Waals gas
21.3.1 Phase equilibrium
21.3.2 Maxwell construction
21.3.3 Delayed boiling and delayed condensation
21.3.4 Theorem of corresponding states
21.4 Examples of phase transitions
21.4.1 Magnetic phase transitions
21.4.2 Order–disorder phase transitions
21.4.3 Change in the crystal structure
21.4.4 Liquid crystals
21.4.5 Superconductivity
21.4.6 Superfluidity
21.5 Multicomponent gases
21.5.1 Partial pressure and Dalton’s law
21.5.2 Euler equation and Gibbs–Duhem relation
21.6 Multiphase systems
21.6.1 Phase equilibrium
21.6.2 Gibbs phase rule
21.6.3 Clausius–Clapeyron equation
21.7 Vapor pressure of solutions
21.7.1 Raoult’s law
21.7.2 Boiling-point elevation and freezing-point depression
21.7.3 Henry–Dalton law
21.7.4 Steam–air mixtures (humid air)
21.8 Chemical reactions
21.8.1 Stoichiometry
21.8.2 Phase rule for chemical reactions
21.8.3 Law of mass action
21.8.4 pH-value and solubility product
21.9 Equalization of temperature
21.9.1 Mixing temperature of two systems
21.9.2 Reversible and irreversible processes
21.10 Heat transfer
21.10.1 Heat flow
21.10.2 Heat transfer
21.10.3 Heat conduction
21.10.4 Thermal resistance
21.10.5 Heat transmission
21.10.6 Heat radiation
21.10.7 Deposition of radiation
21.11 Transport of heat and mass
21.11.1 Fourier’s law
21.11.2 Continuity equation
21.11.3 Heat conduction equation
21.11.4 Fick’s law and diffusion equation
21.11.5 Solution of the equation of heat conduction and diffusion
Formula symbols used in thermodynamics
22 Tables on thermodynamics
22.1 Characteristic temperatures
22.1.1 Units and calibration points
22.1.2 Melting and boiling points
22.1.3 Curie and Néel temperatures
22.2 Characteristics of real gases
22.3 Thermal properties of substances
22.3.1 Viscosity
22.3.2 Expansion, heat capacity and thermal conductivity
22.4 Heat transmission
22.5 Practical correction data
22.5.1 Pressure measurement
22.5.2 Volume measurements—conversion to standard temperature
22.6 Generation of liquid low-temperature baths
22.7 Dehydrators
22.8 Vapor pressure
22.8.1 Solutions
22.8.2 Relative humidity
22.8.3 Vapor pressure of water
22.9 Specific enthalpies
Part V - Quantum physics
23 Photons, electromagnetic radiation and light quanta
23.1 Planck’s radiation law
23.2 Photoelectric effect
23.3 Compton effect
24 Matter waves—wave mechanics of particles
24.1 Wave character of particles
24.2 Heisenberg’s uncertainty principle
24.3 Wave function and observable
24.4 Schrödinger equation
24.4.1 Piecewise constant potentials
24.4.2 Harmonic oscillator
24.4.3 Pauli principle
24.5 Spin and magnetic moments
24.5.1 Spin
24.5.2 Magnetic moments
25 Atomic and molecular physics
25.1 Fundamentals of spectroscopy
25.2 Hydrogen atom
25.2.1 Bohr’s postulates
25.3 Stationary states and quantum numbers in the central field
25.4 Many-electron atoms
25.5 X-rays
25.5.1 Applications of x-rays
25.6 Molecular spectra
25.7 Atoms in external fields
25.8 Periodic Table of elements
25.9 Interaction of photons with atoms and molecules
25.9.1 Spontaneous and induced emission
26 Elementary particle physics—standard model
26.1 Unification of interactions
26.1.1 Standard model
26.1.2 Field quanta or gauge bosons
26.1.3 Fermions and bosons
26.2 Leptons, quarks, and vector bosons
26.2.1 Leptons
26.2.2 Quarks
26.2.3 Hadrons
26.2.4 Accelerators and detectors
26.3 Symmetries and conservation laws
26.3.1 Parity conservation and the weak interaction
26.3.2 Charge conservation and pair production
26.3.3 Charge conjugation and antiparticles
26.3.4 Time-reversal invariance and inverse reactions
26.3.5 Conservation laws
26.3.6 Beyond the standard model
27 Nuclear physics
27.3 Nucleon-nucleon interaction
27.3.1 Phenomenologic nucleon-nucleon potentials
27.3.2 Meson exchange potentials
27.4 Nuclear models
27.4.1 Fermi-gas model
27.4.2 Nuclear matter
27.4.3 Droplet model
27.4.4 Shell model
27.4.5 Collective model
27.5 Nuclear reactions
27.5.1 Reaction channels and cross-sections
27.5.2 Conservation laws in nuclear reactions
27.5.3 Elastic scattering
27.5.4 Compound-nuclear reactions
27.5.5 Optical model
27.5.6 Direct reactions
27.5.7 Heavy-ion reactions
27.5.8 Nuclear fission
27.6 Nuclear decay
27.6.1 Decay law
27.6.2 α-decay
27.6.3 β-decay
27.6.4 γ -decay
27.6.5 Emission of nucleons and nucleon clusters
27.7 Nuclear reactor
27.7.1 Types of reactors
27.8 Nuclear fusion
27.9 Interaction of radiation with matter
27.9.1 Ionizing particles
27.9.2 γ -radiation
27.10 Dosimetry
27.10.1 Methods of dosage measurements
27.10.2 Environmental radioactivity
27.1 Constituents of the atomic nucleus
27.2 Basic quantities of the atomic nucleus
28 Solid-state physics
28.1 Structure of solid bodies
28.1.1 Basic concepts of solid-state physics
28.1.2 Structure of crystals
28.1.3 Bravais lattices
28.1.4 Methods for structure investigation
28.1.5 Bond relations in crystals
28.2 Lattice defects
28.2.1 Point defects
28.2.2 One-dimensional defects
28.2.3 Two-dimensional lattice defects
28.2.4 Amorphous solids
28.3 Mechanical properties of materials
28.3.1 Macromolecular solids
28.3.2 Compound materials
28.3.3 Alloys
28.3.4 Liquid crystals
28.4 Phonons and lattice vibrations
28.4.1 Elastic waves
28.4.2 Phonons and specific heat capacity
28.4.3 Einstein model
28.4.4 Debye model
28.4.5 Heat conduction
28.5 Electrons in solids
28.5.1 Free-electron gas
28.5.2 Band model
28.6 Semiconductors
28.6.1 Extrinsic conduction
28.6.2 Semiconductor diode
28.6.3 Transistor
28.6.4 Unipolar (field effect) transistors
28.6.5 Thyristor
28.6.6 Integrated circuits (IC)
28.6.7 Operational amplifiers
28.7 Superconductivity
28.7.1 Fundamental properties of superconductivity
28.7.2 High-temperature superconductors
28.8 Magnetic properties
28.8.1 Ferromagnetism
28.8.2 Antiferromagnetism and ferrimagnetism
28.9 Dielectric properties
28.9.1 Para-electric materials
28.9.2 Ferroelectrics
28.10 Optical properties of crystals
28.10.1 Excitons and their properties
28.10.2 Photoconductivity
28.10.3 Luminescence
28.10.4 Optoelectronic properties
Formula symbols used in quantum physics
29 Tables in quantum physics
29.1 Ionization potentials
29.2 Atomic and ionic radii of elements
29.3 Electron emission
29.4 X-rays
29.5 Nuclear reactions
29.6 Interaction of radiation with matter
29.7 Hall effect
29.8 Superconductors
29.9 Semiconductors
29.9.1 Thermal, magnetic and electric properties of semiconductors
Part VI - Appendix
30 Measurements and measurement errors
30.1 Description of measurements
30.1.1 Quantities and SI units
30.2 Error theory and statistics
30.2.1 Types of errors
30.2.2 Mean values of runs
30.2.3 Variance
30.2.4 Correlation
30.2.5 Regression analysis
30.2.6 Rate distributions
30.2.7 Reliability
31 Vector calculus
31.1.1 Vectors
31.1.2 Multiplication by a scalar
31.1.3 Addition and subtraction of vectors
31.1.4 Multiplication of vectors
32 Differential and integral calculus
32.1 Differential calculus
32.1.1 Differentiation rules
32.2 Integral calculus
32.2.1 Integration rules
32.3 Derivatives and integrals of elementary functions
33 Tables on the SI
Index
Natural constants in SI units
Thermodynamic formulas
Periodic table