توضیحاتی در مورد کتاب :
این کتابچه راهنمای جدید در مورد تجزیه و تحلیل سیگنال راداری یک رویکرد عمدی و سیستماتیک را اتخاذ می کند. از یک سطح واضح و ثابت از تحویل استفاده می کند و در عین حال جزئیات ریاضی قوی و قابل پیگیری را حفظ می کند. تاکید این کتاب بر روی انواع سیگنال رادار و پردازش سیگنال مربوطه آنهاست و نه بر روی سخت افزار یا قطعات سیستم های راداری.
این کتاب راهنما به عنوان یک مرجع ارزشمند برای طیف وسیعی از مخاطبان عمل می کند. به طور خاص، دانشجویان در سطح کالج، مهندسان رادار، و همچنین خوانندگان معمولی این موضوع، مخاطبان مورد نظر چند فصل اول این کتاب هستند. با پیشرفت فصلهای کتاب، پیچیدگی و ویژگی آن افزایش مییابد. بر این اساس، فصلهای بعدی برای مهندسان، دانشجویان تحصیلات تکمیلی و خوانندگان پیشرفته در نظر گرفته شده است. در نهایت، چند فصل آخر شامل چندین موضوع خاص در مورد سیستم های راداری است که هم آموزشی و هم از نظر علمی سرگرم کننده برای همه خوانندگان است.
ارائه موضوعات در این کتاب راهنما خواننده را به سفری علمی می برد که نشانه های اصلی آن عبارتند از: زیرسیستم ها و اجزای مختلف رادار در این زمینه، فصل ها سیگنال رادار را در طول این سفر از تولد تا پایان عمر آن دنبال می کنند. در طول راه، زیرسیستمهای مختلف رادار مرتبط با جزئیات زیاد تجزیه و تحلیل و مورد بحث قرار میگیرند.
شرکتکنندگان فصل این کتابچه راهنمای جدید شامل اعضای مجرب دانشگاهی و مهندسان رادار مجرب است. مجموع سالهای تجربی آکادمیک و دنیای واقعی آنها بیش از 175 سال است. آنها با هم ترکیبی منحصر به فرد و ساده از ارائههای ریاضی و عملی موضوعات مورد بحث در این کتاب را به ارمغان میآورند. برای کسب اطلاعات بیشتر در مورد این افراد، به بخش "شرکت کنندگان فصل" مراجعه کنید.
فهرست مطالب :
Cover
Half Title
Series Page
Title Page
Copyright Page
Table of Contents
Preface
Editors
Contributors
Acknowledgments
Chapter 1: Signals and Systems - Refresher
1.1. Signal Classification
1.2. Signal Expansion Functions
1.2.1. Fourier Series Expansion
Trigonometric Fourier Series
Complex Exponential Fourier Series
1.2.2. Properties of the Fourier Series
Addition and Subtraction
Multiplication
Average Power
1.3. Fourier Transform
1.3.1. Fourier Transform Pairs and Properties Tables
1.4. Systems Classification
1.4.1. Linear and Nonlinear Systems
1.4.2. Time Invariant and Time Varying Systems
1.4.3. Stable and Nonstable Systems
1.4.4. Causal and Noncausal Systems
1.5. Spectra of Common Radar Signals
1.5.1. Continuous Wave Signal
1.5.2. Finite Duration Pulse Signal
1.5.3. Periodic Pulse Signal
1.5.4. Finite Duration Pulse Train Signal
1.6. Convolution Integral
1.7. Correlation
1.7.1. Correlation Coefficient
Energy Signals
Power Signals
1.7.2. Correlation Integral Energy Signals
1.7.3. Relationship between Convolution and Correlation Integrals
1.7.4. Effect of Time Translation on the Correlation Function
1.7.5. Correlation Function Properties
Conjugate Symmetry
Total Signal Energy
Total Area under the Autocorrelation Function
Maximum Value for the Autocorrelation Function
Fourier Transform for the Correlation Function
1.7.6. Correlation Integral Power Signals
1.7.7. Energy and Power Spectrum Densities
1.7.8. Correlation Function for Periodic Signals
1.8. Bandpass Signals
1.8.1. Analytic Signal (Pre-Envelope)
1.8.2. Pre-Envelope and Complex Envelope of Bandpass Signals
1.8.3. Spectrum for a Linear Frequency Modulation Signal
1.9. Discrete Time Systems and Signals
1.9.1. Sampling Theorem
Lowpass Sampling Theorem
Bandpass Sampling Theorem
1.10. Z-Transform
1.11. Discrete Fourier Transform
1.11.1. Discrete Power Spectrum
1.11.2. Spectral Leakage and Fold-Over
Spectral Leakage
Spectral Fold-Over
1.11.3. Windowing Techniques
Interpolation
1.11.4. Decimation and Interpolation
Decimation
Interpolation
1.12. Random Variables and Random Processes
1.12.1. Random Variables
1.12.2. Multivariate Gaussian Random Vector
1.12.3. Complex Multivariate Gaussian Random Vector
1.12.4. Rayleigh Random Variables
1.12.5. The Chi-Square Random Variables
Central Chi-Square Random Variable with N Degrees of Freedom
Noncentral Chi-Square Random Variable with N Degrees of Freedom
1.12.6. Random Processes
1.12.7. Gaussian Random Process
1.12.8. Lowpass Gaussian Random Processes
1.12.9. Bandpass Gaussian Random Processes
1.12.10. Envelope of a Bandpass Gaussian Process
Chapter 2: Radar Systems Basics
2.1. Radar Block Diagram
2.2. Radar Specific Terms
2.2.1. Range
2.2.2. Unambiguous Range
2.2.3. Range Resolution
2.2.4. Doppler Frequency
Doppler Frequency Extraction - Method I
Doppler Frequency Extraction - Method II
2.3. Radar Systems Classifications and Bands
2.3.1. High Frequency and Very HF Radars (Aand B-Bands)
2.3.2. Ultra High Frequency Radars (C-Band)
2.3.3. L-Band Radars (D-Band)
2.3.4. S-Band Radars (E- and F-Bands)
2.3.5. C-Band Radar (G-Band)
2.3.6. X- and Ku-Band Radars (I- and J-Bands)
2.3.7. K- and Ka- Band Radars (J- and K-Bands)
2.3.8. Millimeter Wave Radars (V- and W-Bands)
2.4. Decibel Arithmetic
2.5. Electromagnetic Waves (RF Waves)
2.5.1. Polarization
2.6. Coherence
2.7. Radar Antenna
2.7.1. Antenna Directivity and Gain
2.7.2. Antenna Power Radiation Pattern
2.7.3. Near and Far Fields
2.7.4. Beam Shape Loss and Scan Loss
Beam Shape Loss
Antenna Scan Loss
2.7.5. Number of Beam Positions
2.8. Radar Cross-Section
2.8.1. RCS Prediction Methods
2.9. Radar Measurement Errors
Chapter 3: Radar Equation
3.1. Radar Range Equation
3.1.1. Maximum Detection Range
3.1.2. Blake Chart
3.1.3. Low Pulse Repetition Frequency Radar Equation
3.1.4. High PRF Radar Equation
3.1.5. Surveillance Radar Equation
3.2. Bistatic Radar Equation
3.3. Radar Losses
3.3.1. Transmit and Receive Losses
3.3.2. Antenna Pattern Loss and Scan Loss
3.3.3. Atmospheric Loss
Atmospheric Absorption
Atmospheric Attenuation Plots
Attenuation Due to Precipitation
3.3.4. Collapsing Loss
3.3.5. Processing Loss
Detector Approximation
Constant False Alarm Rate Loss
Quantization Loss
Range Gate Straddle Loss
Doppler Filter Straddle Loss
Other Losses
3.4. Noise Figure
3.5. Continuous Wave Radars
3.5.1. CW Radar Equation
3.5.2. Frequency Modulation
3.5.3. Linear Frequency Modulated CW Radar
3.5.4. Multiple Frequency CW Radar
Chapter 4: Radar Propagation Medium
4.1. Earth’s Impact on the Radar Equation
4.2. Earth’s Atmosphere
4.3. Atmospheric Models
4.3.1. Index of Refraction in the Troposphere
4.3.2. Index of Refraction in the Ionosphere
4.3.3. Mathematical Model for Computing Refraction
4.3.4. Stratified Atmospheric Refraction Model
4.4. Four-Third Earth Model
4.4.1. Target Height Equation
4.5. Ground Reflection
4.5.1. Smooth Surface Reflection Coefficient
4.5.2. Divergence
4.5.3. Rough Surface Reflection
4.5.4. Total Reflection Coefficient
4.6. Pattern Propagation Factor
4.6.1. Flat Earth
4.6.2. Spherical Earth
4.7. Diffraction
Chapter 5: Radar Electronic Warfare Techniques
5.1. Electronic Warfare Classes
5.2. Passive Jamming Techniques
5.3. Radar Equation with Jamming
5.3.1. Self-Protection Jamming Radar Equation
Burn-Through Range
5.3.2. Support Jamming Radar Equation
5.3.3. Range Reduction Factor
5.4. Noise (Denial) Jamming Techniques
5.4.1. Barrage Noise Jamming
5.4.2. Spot Noise and Sweep Spot Noise Jamming
5.5. Deceptive Jamming
5.6. Electronic Counter-Counter Measure Techniques
5.6.1. Receiver Protection Techniques
5.6.2. Jamming Avoidance and Exploitation Techniques
5.7. Case Studies
5.7.1. Hypothetical Victim-Radar Parameters
5.7.2. Self-Screening Jamming Case
5.7.3. Support Jamming Case
Chapter 6: Matched Filter Receiver
6.1. Matched Filtering
6.1.1. Matched Filter Impulse Response
6.1.2. The Replica
6.1.3. Mean and Variance of the Matched Filter output
6.2. General Formula for the Output of the Matched Filter
6.2.1. Stationary Target Case
6.2.2. Moving Target Case
6.3. Waveform Resolution
6.3.1. Range Resolution
6.3.2. Doppler Resolution
6.3.3. Combined Range and Doppler Resolution
6.4. Range and Doppler Uncertainty
6.4.1. Range Uncertainty
6.4.2. Doppler (Velocity) Uncertainty
6.5. Combined Range-Doppler Uncertainty
6.6. Target Parameter Estimation
6.6.1. What Is an Estimator?
6.6.2. Amplitude Estimation
6.6.3. Phase Estimation
6.7. Pulse Compression
6.7.1. Time-Bandwidth Product
6.7.2. Radar Equation with Pulse Compression
6.7.3. Basic Principle of Pulse Compression
6.7.4. Correlation Processor
6.7.5. Stretch Processor
6.7.6. Stepped Frequency Waveforms
Range Resolution and Range Ambiguity in SFW
6.7.7. Effect of Target Velocity on Pulse Compression
SFW Case
LFM Case
Range-Doppler Coupling in LFM
Chapter 7: Radar Ambiguity Function
7.1. Ambiguity Function Definition
7.2. Effective Signal Bandwidth and Duration
7.3. Single Pulse Ambiguity Function
7.3.1. Time-Bandwidth Product
7.3.2. Ambiguity Function
7.4. LFM Ambiguity Function
7.4.1. Time-Bandwidth Product
7.4.2. Ambiguity Function
7.5. Coherent Pulse Train Ambiguity Function
7.5.1. Time-Bandwidth Product
7.5.2. Ambiguity Function
7.6. Pulse Train with LFM Ambiguity Function
7.7. Stepped Frequency Waveform Ambiguity Function
7.8. Nonlinear Frequency Modulation
7.8.1. Concept of Stationary Phase
7.8.2. Frequency Modulated Waveform Spectrum Shaping
7.9. Ambiguity Diagram Contours
7.9.1. Range-Doppler Coupling in LFM Signals - Revisited
7.10. Discrete Code Signal Representation
7.10.1. Pulse-Train Codes
7.11. Phase Coding
7.11.1. Binary Phase Codes
Barker Code
Pseudo-Random Number Codes
Linear Shift Register Generators
Maximal Length Sequence Characteristic Polynomial
7.11.2. Polyphase Codes
Frank Codes
7.12. Frequency Codes
Chapter 8: Target Detection
Part I: Single Pulse Detection
8.1. Single Pulse with Known Parameters
8.2. Single Pulse with Known Amplitude and Unknown Phase
8.2.1. Probability of False Alarm
8.2.2. Probability of Detection
Part II: Detection of Fluctuating Targets
8.3. Pulse Integration
8.3.1. Coherent Integration
8.3.2. Noncoherent Integration
8.3.3. Improvement Factor and Integration Loss
8.3.4. Probability of False Alarm Formulation for a Square Law Detector
8.3.5. Square Law Detection
8.4. Probability of Detection Calculation
8.4.1. Detection of Swerling 0 (Swerling V) Targets
8.4.2. Detection of Swerling I Targets
8.4.3. Detection of Swerling II Targets
8.4.4. Detection of Swerling III Targets
8.4.5. Detection of Swerling IV Targets
8.5. Cumulative Probability of Detection
8.6. Constant False Alarm Rate
8.6.1. Cell-Averaging CFAR (Single Pulse)
8.6.2. Cell-Averaging CFAR with Noncoherent Integration
8.7. M-out-of-N Detection
8.8. Radar Equation-Revisited
8.9. Gamma Function
8.9.1. Incomplete Gamma Function
Chapter 9: Radar Signal Processing in Clutter
9.1. Introduction
9.2. Clutter Definition
9.3. Volume Clutter
Volume Cell
Rain
Chaff
9.3.1. Radar Range Equation in Volume Clutter
9.3.2. Volume Clutter Spectra
9.4. Area Clutter
9.4.1. Constant Y Model
9.4.2. Signal to Clutter, Airborne Radar
9.5. Clutter RCS, Ground-Based
9.5.1. Low PRF Case
9.5.2. High PRF Case
9.6. Amplitude Distribution
9.7. Area Clutter Spectrum
9.8. Doppler Processing
9.8.1. Range and Doppler Processing
9.8.2. Range and Doppler Ambiguity
9.8.3. Generalized Spectrum for Ground and Airborne Systems
9.9. Moving Target Indicator
9.9.1. Two Pulse Canceler
9.9.2. Three Pulse Canceler
9.9.3. The N+1 Pulse Canceler
9.9.4. Recursive MTI Filter
9.9.5. Blind Speeds and PRF Staggering
9.9.6. MTI Figures of Merit
9.10. Pulse Doppler Processing
9.10.1. Discrete Time Fourier Transform
9.10.2. Discrete Fourier Transform
9.10.3. Windowing
9.11. Ambiguity Resolution
9.11.1. Range Ambiguity Resolution
9.11.2. Doppler Ambiguity Resolution
9.11.3. Pulse Pair Processing
9.12. Limitations of Doppler Processing
Appendix 9-A: Fill Pulses in Pulse Doppler Radars
9.A.1. Range and Doppler Ambiguities
9.A.2. Overview of Fill Pulses
9.A.3. Pulse Doppler Waveform with Fill Pulses
9.A.4. Recovery of Fill Pulses
9.A.5. Doppler Filtering Fill Pulses
9.A.6. Caveats and Extension
Chapter 10: Radar Tracking
10.1. Introduction
10.2. Basic Concepts
10.2.1. Tracking Architecture
10.2.2. State Space Representation
10.3. Measurements
10.3.1. Angle Measurements
Sequential Lobing
Amplitude Comparison Monopulse
Phase Comparison Monopulse
Range Tracking and Measurements
Measurement Accuracy
10.4. Filtering
10.4.1. Least Squares
10.4.2. Recursive Least Squares
10.4.3. Kalman Filter
10.4.4. Extended Kalman Filter
10.5. Derivation of Recursive Least Squares
10.6. Data Association
10.6.1. Gating
Global Nearest Neighbor
Joint Probabilistic Data Association
Multiple Hypothesis Tracker
10.7. Tracking Maneuvering Targets
10.7.1. Field Parameter Filters
10.7.2. Dynamic Parameter Filters
10.7.3. Multiple Model Filters
Chapter 11: Canonical and Finite Difference Time Domain Methods for RCS Computation
11.1. Radar Cross-Section Definition
11.2. RCS Dependency on Aspect Angle and Frequency
11.3. Target Scattering Matrix
11.4. Scattering off Basic Canonical Objects
11.4.1. Cylinder
11.4.2. Dielectric-Capped Wedge
Far Scattered Field
Plane Wave Excitation
Special Cases
Sample Numerical Results
11.4.3. Spheres
11.4.4. Ellipsoids
11.5. RCS Approximations of Simple Objects
11.5.1. Finite Length Cylinder
11.5.2. Circular Flat Plate
11.5.3. Rectangular Flat Plate
11.5.4. Triangular Flat Plate
11.5.5. Truncated Cone (Frustum)
11.6. RCS Using Computational Electromagnetics
11.6.1. The Standard Finite Difference Time Domain Method
11.7. RCS Using the FDTD Method
11.7.1. RCS of a Sphere
11.7.2. RCS of Complex Objects
Chapter 12: Integral and Physical Optics Methods for RCS Computation
12.1. Introduction
12.2. Radiation and Scattering
12.2.1. Maxwell’s Equations
12.2.2. Boundary Conditions
12.2.3. Formulations for Radiation
12.2.4. Near and Far Fields
Three-Dimensional Far Field
12.2.5. Formulations for Scattering
Surface Equivalent
Surface Integral Equations
12.3. Numerical Methods
12.3.1. Method of Moments
MoM For 3-D Surfaces of Arbitrary Shape
Fast Multipole Method
Adaptive Cross-Approximation
12.3.2. Physical Optics
12.3.3. Physical Theory of Diffraction
12.3.4. Shooting and Bouncing Rays
12.3.5. Scattering Centers
Scattering Center Definition
Extraction
Scattering Center Models
12.4. RCS Data Products
12.5. Scattering Coordinate System
12.5.1. Target Geometry Coordinate System
12.5.2. Spherical Coordinates
Sampling on the Sphere
Vertical and Horizontal Polarizations
12.5.3. Aspect and Roll Coordinates
12.5.4. Measurement Coordinate System
12.6. Examples
12.6.1. Bodies of Revolution
Frustum
Cone-Sphere
Monoconic Reentry Vehicle
12.6.2. Complex Three-Dimensional Objects
Trihedral Corner Reflector
Business Jet
Chapter 13: Antennas for Radar Applications
13.1. Antenna Types
13.2. Antenna Basic Parameters
13.2.1. Radiation Pattern
Half-Power Beamwidth
Beam Solid Angle
Sidelobe
Forward / Backward Ratio
Voltage Standing Wave Ratio
Antenna Bandwidth
13.2.2. Antenna Radiated Power
13.2.3. Radiation Intensity
13.2.4. Directivity
13.2.5. Antenna Gain
13.2.6. Antenna Effective Aperture
13.3. General Antenna Arrays
13.4. Linear Arrays
13.5. Array Tapering
13.6. Planar Arrays
13.6.1. Rectangular Grid Arrays
13.6.2. Circular Grid Arrays
13.6.3. Concentric Grid Circular Arrays
13.6.4. Recursive Circular 2-D Arrays
13.6.5. Rectangular Grid with Circular Boundary Arrays
13.7. Three-Dimensional Arrays
13.7.1. Rectangular Parallelepiped 3-D Array
13.7.2. Spherical 3-D Arrays
13.7.3. Arbitrary Arrays
13.8. Array Feeding and Beamforming Networks
13.8.1. General Forms of Array Feeding Networks
13.8.2. Wideband Operation of Feeding Networks
13.8.3. Array Beamforming Networks
13.8.4. Power-Divider Beamforming Networks
13.8.5. Butler and Blass Matrix
13.8.6. Rotman Lens
13.8.7. Design Considerations for Beamforming Networks
13.8.8. Feeding and Beamforming Networks for Two-Dimensional Arrays
Chapter 14: Synthetic Aperture Radar
14.1. Basic Strip-Map Synthetic Aperture Radar Concept
14.1.1. Down Range Resolution
14.1.2. Cross-Range Resolution
14.1.3. Pulse Repetition Frequency Considerations
14.2. SAR Image Formation
14.2.1. Image Formation Processing Steps
14.2.2. Motion Compensation
14.2.3. Image Formation
14.2.4. Auto-Focus Techniques
14.3. Image Quality Considerations
14.4. Spotlight SAR
14.4.1. Motion through Resolution Cells
14.4.2. Polar Format Algorithm
14.4.3. Interferometric Synthetic Aperture Radar
14.5. Inverse Synthetic Aperture Radar
Chapter 15: Wideband Radar Applications
15.1. Introduction
15.2. Band Versus Bandwidth
15.2.1. Various Bandwidths
15.2.2. Narrow Band, Medium Band and Wideband
15.3. Wideband Radar Applications
15.3.1. Foliage Penetrating Synthetic Array Radar
15.3.2. Automotive Blind Spot Warning and Collision Avoidance
15.3.3. Space Object Identification
15.3.4. Ground Perimeter Surveillance
15.3.5. Pavement Profiling and Inspection
15.3.6. Wall-Penetrating Radar for Detecting People
15.3.7. Noninvasive Construction Scanning
15.3.8. Industrial Robot Control
15.3.9. Compact Radar Range
15.3.10. Airport Security Imaging and Detection
15.3.11. Application Conclusions
Chapter 16: Modern Digital Array Antennas for Radar Applications
16.1. Introduction
16.2. Introduction to Digital Arrays
16.3. Comparison of Array Antenna Architectures by Example
16.4. Other Digital Array Advantages
16.5. Extreme Data Rate Demands in Digital Arrays
16.6. Digital Down-Conversion and Digital Up-Conversion
16.7. Array Factor versus Huygens-Fresnel Principle
16.8. Simultaneous Receive Beams
16.9. Array Scanning Effects to Antenna Pattern
16.10. Noise Figure and Third Order Intercept in AESA
16.11. Concluding Remarks
Bibliography
Index
توضیحاتی در مورد کتاب به زبان اصلی :
This new handbook on radar signal analysis adopts a deliberate and systematic approach. It uses a clear and consistent level of delivery while maintaining strong and easy-to-follow mathematical details. The emphasis of this book is on radar signal types and their relevant signal processing and not on radar systems hardware or components.
This handbook serves as a valuable reference to a wide range of audience. More specifically, college-level students, practicing radar engineers, as well as casual readers of the subject are the intended target audience of the first few chapters of this book. As the book chapters progress, these grow in complexity and specificity. Accordingly, later chapters are intended for practicing engineers, graduate college students, and advanced readers. Finally, the last few chapters contain several special topics on radar systems that are both educational and scientifically entertaining to all readers.
The presentation of topics in this handbook takes the reader on a scientific journey whose major landmarks comprise the different radar subsystems and components. In this context, the chapters follow the radar signal along this journey from its birth to the end of its life. Along the way, the different relevant radar subsystems are analyzed and discussed in great detail.
The chapter contributors of this new handbook comprise experienced academia members and practicing radar engineers. Their combined years of academic and real-world experiences are in excess of 175. Together, they bring a unique, easy-to-follow mix of mathematical and practical presentations of the topics discussed in this book. See the "Chapter Contributors" section to learn more about these individuals.