Handbook of Smart Manufacturing: Forecasting the Future of Industry 4.0

دانلود کتاب Handbook of Smart Manufacturing: Forecasting the Future of Industry 4.0

37000 تومان موجود

کتاب هندبوک تولید هوشمند: پیش بینی آینده صنعت 4.0 نسخه زبان اصلی

دانلود کتاب هندبوک تولید هوشمند: پیش بینی آینده صنعت 4.0 بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 13


توضیحاتی در مورد کتاب Handbook of Smart Manufacturing: Forecasting the Future of Industry 4.0

نام کتاب : Handbook of Smart Manufacturing: Forecasting the Future of Industry 4.0
ویرایش : 1 ed.
عنوان ترجمه شده به فارسی : هندبوک تولید هوشمند: پیش بینی آینده صنعت 4.0
سری :
نویسندگان : , , ,
ناشر : CRC Press
سال نشر : 2023
تعداد صفحات : 424 [385]
ISBN (شابک) : 1032363436 , 9781032363431
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 34 Mb



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover Half Title Title Page Copyright Page Contents Preface Acknowledgments Editor's Biography Contributors 1. Smart Manufacturing and Industry 4.0: State-of-the-Art Review 1.1 Introduction 1.2 Related work 1.3 Methodology 1.3.1 Research questions 1.3.2 Search strategy 1.3.2.1 Population 1.3.2.2 Intervention 1.3.2.3 Comparison 1.3.2.4 Outcomes 1.3.3 Selection of studies 1.3.4 Data extraction 1.3.5 Quality evaluation 1.4 Results and discussion 1.4.1 Discussion on RQ1 and RQ2 1.4.1.1 Technology (E8) 1.4.1.2 Organizational strategy (E1) 1.4.1.3 People/culture/employees (E3) 1.4.1.4 Processes (E4) 1.4.1.5 Products (E6) 1.4.1.6 Customers (E5) 1.4.1.7 Innovation (E2) 1.4.1.8 Services (E7) 1.4.2 Discussion on RQ3 1.4.2.1 Theme based on blue cluster. 1.4.2.2 Theme based on yellow cluster. 1.4.2.3 Theme based on red cluster. 1.4.2.4 Theme based on green cluster. 1.4.2.5 Theme based on purple cluster. 1.4.2.6 Co-citation network analysis 1.5 Validity threats 1.6 Conclusion References Appendix 2. Study and Analysis of IoT (Industry 4.0): A Review 2.1 Introduction 2.2 Automation Techniques Used in Industry 4.0 2.3 Conclusion References 3. Recent Advances in Cybersecurity in Smart Manufacturing Systems in the Industry 3.1 Introduction to Smart Manufacturing Systems 3.2 Cybersecurity and Its Need in Smart Manufacturing Systems 3.3 Cyber-Threats to Smart Manufacturing 3.4 Strengths and Weaknesses of Smart Manufacturing Systems 3.4.1 Strengths of Smart Manufacturing Systems 3.4.2 Weaknesses of Smart Manufacturing Systems 3.5 Preparedness Against the Threats Using the Proposed Techniques 3.5.1 Threat Modeling in ICPS 3.5.2 Digital Twins 3.5.3 Regulations and Standards 3.5.4 Cryptographic Techniques 3.5.5 Intrusion Detection Systems 3.5.6 Human Factors and Training of Security Skills 3.5.7 Blockchain—The Emerging Technology 3.5.7.1 Key Highlights of Blockchain 3.5.7.2 Applications of Blockchain 3.5.8 Artificial Neural Network 3.5.9 Management Post-Incident 3.6 Summary 3.7 Conclusion and Future Perspectives References 4. Integration of Circular Supply Chain and Industry 4.0 to Enhance Smart Manufacturing Adoption 4.1 Introduction 4.1.1 Bakground and Motivation 4.1.2 Study Objective 4.2 Literature Review 4.2.1 Circular Supply Chain Practices 4.2.2 MCDM Methods 4.3 Research Methodology 4.4 Weight Determination by Fuzzy AHP (FAHP) [35] 4.5 Framework Development 4.6 Result 4.6.1 Managerial Practices 4.6.2 Technological Practices 4.6.3 Sustainability and Green Practices 4.6.4 Organizational Practices 4.6.5 Sociocultural Practices 4.7 Discussion 4.8 Conclusion 4.9 Study Implications 4.10 Limitations and Future Scope References 5. Artificial Intelligence with Additive Manufacturing 5.1 Introduction 5.2 Smart AM 5.3 AI for Controlling 5.4 AI to Predict the Anomalies Abnormal Activity Recognition Algorithm 5.5 AI for Component Scale 5.6 Quantify the Material Distortion Using AI 5.7 AI for Remote Defect Detection 5.8 AI for Bioprinting 5.9 Patent Landscape for Additive Manufacturing 5.10 Conclusion References 6. Robotic Additive Manufacturing Vision towards Smart Manufacturing and Envisage the Trend with Patent Landscape 6.1 Introduction 6.2 Large-Area Additive Manufacturing 6.3 Multi-Degrees of Freedom 6.4 RAM for Tooling 6.4.1 Tool Path Planning 6.4.2 Process Planning 6.4.3 Optimization Techniques 6.5 Latest Technologies Like AI, ML, and Deep Learning for RAM 6.6 Automatic Inspection 6.6.1 Tool-Path Strategies 6.6.2 Spherical 6.7 Patent Landscape Robotic Additive Manufacturing 6.8 Conclusion References 7. Smart Materials for Smart Manufacturing 7.1 Introduction 7.2 Shape Memory Materials 7.2.1 Shape Memory Alloys 7.2.2 Shape Memory Polymers 7.2.3 Shape Memory Composites 7.2.4 Shape Memory Hybrids 7.3 Piezoelectric, Chromo-Active, Photoactive, Magneto-Rheological, Electrostrictive, and Self-Healing Smart Materials 7.3.1 Piezoelectric and Electrostrictive Materials 7.3.2 Chromoactive Materials 7.3.3 Photoactive Materials 7.3.4 Magnetorheological Materials 7.3.4.1 Magnetorheological Material Development 7.3.5 Self-Healing Materials 7.4 Smart Biomaterials 7.4.1 Smart Hydrogels 7.4.2 Smart Nanomaterials 7.4.3 Smart Bioconjugates 7.5 Bicomponent Fibers 7.5.1 Types of Bicomponent Fibers 7.5.1.1 Production Methods for Bicomponent Fibers 7.5.1.2 There Are Three Categories under Which Side-by-Side Component Fiber Production Can Be Divided 7.5.1.3 Aftertreatment of Bicomponent Fibers 7.5.2 Application/Uses of Bicomponent Fibers 7.5.2.1 Fibers Used in Nonwovens as Bonding Components 7.5.2.2 Microfibers 7.5.2.3 Fibers with Special Cross Sections 7.5.2.4 High-Performance Fibers 7.5.2.5 Functional Surface Fibers 7.5.2.6 Fibers for Fully Thermoplastic Fiber-Reinforced Composites 7.5.2.7 Shape Memory Fibers 7.5.2.8 Polymer Optical Fibers 7.5.2.9 Use of Bicomponent Fiber in Manufacturing Bulk Yarn for Knitting 7.6 Functionally Graded Materials 7.6.1 Production Method for FGMs 7.7 Smart Nanomaterials 7.8 Smart Metals, Polymers, Ceramics, and Composites 7.8.1 Smart Metals: Alloys with Brains 7.8.1.1 History of Smart Metals 7.8.1.2 How They Work 7.8.2 Smart Polymers 7.8.2.1 Applications 7.8.2.2 Stimuli 7.8.2.3 Classification and Chemistry 7.8.2.4 Other Applications 7.8.2.5 Future Applications 7.8.3 Smart Ceramics 7.8.3.1 Passive Smartness 7.8.3.2 Active Smartness 7.8.4 Smart Composite 7.9 Results and Discussion 7.10 Conclusion References 8. Smart Biomaterials in Industry and Healthcare 8.1 Introduction 8.2 Types of Smart Biomaterials 8.2.1 Conventional Biomaterials 8.2.1.1 Polymers 8.2.1.2 Metals 8.2.1.3 Ceramics 8.2.1.4 Composites 8.2.2 Natural Biomaterials 8.2.2.1 Collagen 8.2.2.2 Agarose 8.2.2.3 Cellulase 8.2.2.4 Fibrin 8.2.3 Nanostructured Biomaterials 8.3 Application of Smart Biomaterials in Different Health Sectors 8.3.1 Clinical Applications 8.3.1.1 Arterial Prostheses 8.3.1.2 Implants 8.3.1.3 Auxetic Stents 8.3.1.4 Auxetic Scaffolds 8.3.1.5 Dilators 8.3.1.6 Auxetic Bandages 8.3.2 Medical Applications 8.3.2.1 In Tissue Engineering 8.3.2.2 Hydrogels 8.3.2.3 In Medical Devices 8.3.2.4 In Immune Engineering 8.3.2.5 In Drug Delivery 8.4 Advantages of Biomaterials 8.5 Disadvantages of Biomaterials 8.6 Conclusions and Future Perspectives References 9. Ferroelectric Polymer Composites and Evaluation of Their Properties 9.1 Introduction 9.2 Experimental Technique and Samples 9.3 Results and Discussion 9.3.1 Ferroelectric Composites Based on LDPE, Elastomeric, and PVDF Matrices 9.3.2 Ferroelectric Composites Based on Biodegradable Poly(Lactic Acid) 9.4 Conclusions References 10. 4D Print Today and Envisaging the Trend with Patent Landscape for Versatile Applications 10.1 Introduction 10.2 4D Today 10.2.1 Shape-Modifying Polymers 10.2.2 Hydrogels 10.2.3 Liquid Crystal Elastomers (LCEs) 10.3 Polymer 4D-Printing Applications 10.4 Future Scope 10.4.1 Bio-Cell Printing 10.4.2 Scaffold Printing 10.5 Conclusion References 11. Investigating the Work Generation Potential of SMA Wire Actuators 11.1 Introduction 11.2 Theory and Methods 11.2.1 Case 1: SMA Wire with Normal Spring 11.2.2 Case 2: SMA Wire in an Antagonistic Configuration 11.3 Results and Discussions 11.3.1 Case 1: SMA Wire with Normal Spring 11.3.2 Case 2: SMA Wire in an Antagonistic Configuration 11.3.3 Parametric Variations 11.4 Conclusions References 12. Troubleshooting on the Sample Preparation during Fused Deposition Modeling 12.1 Introduction 12.2 Classification of Additive Manufacturing Techniques as per ASTM Standards 12.2.1 Binder Jetting (BJ) 12.2.2 Direct Energy Deposition (DED) 12.2.3 Powder Bed Fusion (PBF) 12.2.4 Sheet Lamination (SL) 12.2.5 Vat Photo Polymerization (VP) 12.2.6 Material Extrusion (ME) 12.3 Fused Deposition Modeling 12.3.1 Basic Principle of FDM 12.3.2 Materials Available for FDM 12.4 Challenges during Printing 12.4.1 Warping 12.4.2 Leaning Prints/Shifted Layers 12.4.3 Stringing Effect 12.4.4 Pillowing 12.4.5 Under Extrusion 12.4.6 Skipped Layer/Bed Drop 12.4.7 Elephant Foot 12.5 Conclusion References 13. Hybrid Additive Manufacturing Technologies 13.1 Introduction 13.2 Overview of Additive Manufacturing 13.3 Additive Manufacturing Process Chain 13.3.1 Creation of 3D Data Set 13.3.2 AM Process and Material Selection 13.3.3 AM Front-End Data Handling and Build Process 13.3.4 Post-Processing 13.4 Metal Additive Manufacturing Techniques 13.5 Fabrication of Functional Components through Hybrid Manufacturing 13.5.1 Hybrid Process 13.5.2 Hybrid Additive Manufacturing 13.5.3 Hybrid Material 13.6 A Case Study of Hybrid Technologies Using Additive Manufacturing Technology 13.6.1 Machining of Additive Manufactured Parts 13.6.2 The Hybrid Process of PBF and DED 13.6.3 Hybrid Metals Manufactured by Powder Bed Fusion 13.7 Conclusion References 14. Smart Manufacturing Using 4D Printing 14.1 Introduction 14.2 Brief History of 3D Printing 14.3 3D-Printing Process 14.4 Need for 4D Printing 14.5 4D Printing 14.6 Factors Responsible for 4D Printing 14.7 Laws of 4D Printing 14.7.1 First Law 14.7.2 Second Law 14.7.3 Third Law 14.8 Techniques Used in 4D Printing 14.8.1 Single Material 14.8.2 Multi-Materials 14.8.3 Non-Active Materials 14.9 Materials Used in 4D Printing [20] 14.9.1 Moisture-Responsive Hydrogels 14.9.2 Thermo-Responsive 14.9.3 Photo-Responsive 14.9.4 Electro-Responsive 14.9.5 Magneto-Responsive 14.9.6 Piezoelectric Responsive 14.9.7 pH Responsive 14.10 Properties of Materials Used in 4D Printing 14.10.1 Self-Assembly 14.10.2 Self-Adaptability 14.10.3 Self-Repair 14.11 Applications of 4D Printing [20] 14.11.1 Medical 14.11.2 Soft Robotics 14.11.3 Self-Evolving Structures 14.11.4 Origami 14.11.5 Aerospace 14.11.6 Sensors and Flexible Electronics 14.12 Other Applications of 4D Printing [54] 14.13 Role of 4D Printing in the Field of Manufacturing 14.14 Challenges [90] 14.15 Future Scope 14.16 Conclusion References 15. Developments in 4D Printing and Associated Smart Materials 15.1 Introduction 15.2 Literature Review 15.3 4D Printing 15.3.1 4D Printing Using Polyurethane (Pu) and Polyurethane Composites 15.3.2 4D Printing Using Polylactic Acid (PLA) and Polylactic Acid Composites 15.4 Smart Material 15.4.1 Shape Memory Materials (SMM) 15.4.2 Stimulus-Responsive Single SMP 15.4.3 Shape Memory Alloys 15.4.4 Metamaterials 15.5 Shape Change Mechanism 15.5.1 Active Origami and Self-Folding Techniques 15.5.2 Stimuli-Based Actuation 15.5.2.1 Temperature-Induced Actuation 15.5.2.2 Moisture or Solvent-Induced Actuation 15.5.2.3 Magnetically Induced Actuation 15.6 Applications 15.6.1 Mechanical Actuators 15.6.1.1 Thermo-Responsive Smart Gripper 15.6.1.2 Magnetically Activated Smart Key-Lock Connectors 15.6.1.3 Adaptive Metamaterials 15.6.2 Bio-Medical Applications 15.6.2.1 Tracheal Stent 15.6.2.2 Adaptive Scaffold 15.6.3 Aerospace and Aeronautic 15.6.4 Building and Construction 15.7 Challenges and Future Scope References 16. Role of Smart Manufacturing Systems in Improving Electric Vehicle Production 16.1 Introduction 16.2 Literature Work on Smart Manufacturing Applications in the Electric Vehicle Domain 16.3 Research Methodology Adopted for the Study 16.4 Identification of Enablers in Smart Manufacturing Systems in the EV Domain 16.5 VAXO Relationship Identification 16.6 Final Reachability Matrix 16.7 MICMAC Analysis 16.7.1 Cluster I-Autonomous of EV Enablers 16.7.2 Cluster II-Dependence Zone of EV Enablers 16.7.3 Cluster III-Linkage of EV Enablers 16.7.4 Cluster IV-Driver Zone of EV Enablers 16.8 ISM Model Development with EV Enablers 16.9 Conclusion and Future Recommendations References 17. Safety Management with Application of Internet of Things, Artificial Intelligence, and Machine Learning for Industry 4.0 Environment 17.1 Introduction 17.2 Background 17.3 Safety Standards/Regulations 17.4 Emerging Risks 17.5 Framework for AI Safety Management System (AISMS) 17.6 Discussion 17.7 Recommendations 17.8 Conclusion References 18. CPM/PERT-Based Smart Project Management: A Case Study 18.1 Introduction 18.2 Literature Survey 18.3 Materials and Method 18.4 Problem Definition 18.5 Discussion and Results 18.5.1 Possibility of the Project to Be Finished Before 395 Days 18.5.2 Maximum Project Crashing 18.5.3 Crashing the Project with a $50,000 Additional Budget 18.5.4 Crashing the Project as Long as Profitable 18.6 Conclusion Acknowledgments References Index




پست ها تصادفی