توضیحاتی در مورد کتاب Handbook of Sodium-Ion Batteries: Materials and Characterization
نام کتاب : Handbook of Sodium-Ion Batteries: Materials and Characterization
عنوان ترجمه شده به فارسی : کتابچه راهنمای باتری های سدیم-یون: مواد و خصوصیات
سری :
نویسندگان : Gaddam R.R., Zhao X.S. (ed.)
ناشر : Jenny Stanford Publishing
سال نشر : 2023
تعداد صفحات : 762
ISBN (شابک) : 9789814968157
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 60 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Half Title
Handbook of Sodium-Ion Batteries: Materials and Characterization
Copyright
Contents
Preface
1. Challenges and Opportunities in Sodium-Ion Batteries: An Introduction
1.1 Importance of Batteries for Energy Storage
1.2 Developing Sodium-Ion Battery
1.3 Anodes
1.3.1 Carbon-Based Anodes
1.3.2 Carbon Alloy-Based Anodes
1.3.3 Other Anode Materials
1.4 Cathodes
1.4.1 Fluoride-Based Cathodes
1.4.2 Prussian Blue Analogues
1.4.3 Other Cathode Materials
1.5 Electrolytes
1.6 Summary and Future Perspective
References
2. Principles of Electrochemistry
2.1 Electrochemical Cells
2.2 Alkali-Ion Batteries
2.3 Thermodynamics
2.4 Electrode Reaction Kinetics
2.5 Electrode Reaction Mechanisms
References
3. Cathode Materials for Sodium-Ion Batteries
3.1 Introduct on
3.2 Sodium Layered Oxides
3.2.1 Structure and Propert es of Layered Transit on Metal Oxides
3.2.2 NaxCoO2 and Its Derivat ves
3.2.3 NaxMnO2 and Its Derivat ves
3.2.4 NaxFeO2 and Its Derivat ves
3.2.5 NaNiO2 and Its Derivat ves
3.2.6 NiCrO2 and Its Derivat ves
3.2.7 NiVO2 and Its Derivat ves
3.2.8 Other NaxMO2
3.3 Polyanionic Materials
3.3.1 Phosphates
3.3.1.1 Olivine
3.3.1.2 NASICON
3.3.1.3 Pyrophosphates
3.3.1.4 Fluorophosphates
3.3.1.5 Other phosphates
3.3.2 Sulfates
3.3.2.1 Fluorosulfates
3.3.2.2 Alluaudites
3.3.3 Other Oxysalts
3.3.3.1 Silicates
3.3.3.2 Carbonophosphates
3.4 Prussian Blue Analogs
3.4.1 Crystal Structure of Prussian Blue Analogs
3.4.2 Iron Hexacyanoferrate
3.4.3 Manganese Hexacyanoferrate
3.4.4 Cobalt Hexacyanoferrate
3.4.5 Nickel Hexacyanoferrate
3.4.6 Other Hexacyanoferrate Compounds
3.4.7 Structural and Morphological Opt mizat ons of PBAs
3.5 Conversion-Based Cathode Materials
3.5.1 Metal Fluorides
3.5.2 Carbon Fluorides
3.5.3 Oxyfluorides
3.5.4 Metal Sulfides
3.5.5 Metal Selenides
3.5.6 Other Conversion Cathode Materials
3.6 Organic Cathode Materials
3.6.1 Carbonyl Compounds (C=O Reaction)
3.6.1.1 Quinones and ketones
3.6.1.2 Anhydrides and imides
3.6.2 Pteridine Derivatives (C=N Reaction)
3.6.3 Polymers (Doping Reaction)
3.6.3.1 Conductive polymers
3.6.3.2 Nitroxyl radical polymer
3.6.3.3 Microporous polymers
3.6.3.4 Organometallic polymers
3.7 Conclusion
References
4. Prussian Blue Analogues as Cathode Materials for Sodium-Ion Batteries
4.1 Introduct on
4.2 Structure and Working Principle of PBAs
4.2.1 Typical Structures and Phases of PBAs
4.2.2 Redox React on and Electric Energy Storage Mechanism
4.2.3 Na+ Diffusion
4.2.4 Phase Transit on During Charge/Discharge
4.3 Synthesis Methods
4.4 Typical Hexacyanoferrate
4.4.1 Nickel Hexacyanoferrate (NiHCF)
4.4.2 Iron Hexacyanoferrate (FeHCF)
4.4.3 Manganese Hexacyanoferrate (MnHCF)
4.4.4 Other Prussian Blue Analog Compounds
4.4.5 Mult -Metal Hexacyanoferrate
4.5 Others
4.6 Summary and Outlook
Acknowledgment
References
5. Polymer Electrodes for Sodium-Ion Batteries
5.1 Introduction
5.2 Polymer Electrode Materials for NIBs
5.2.1 Polymers with Carbonyl Functional Groups
5.2.1.1 Polyimides
5.2.1.2 Polyquinones
5.2.2 Schiff Base Polymer Electrode Materials
5.2.3 Conducting Polymer Electrode Materials
5.2.3.1 Conjugated conducting polymers
5.2.3.2 Non-conjugated conductive radical polymers
5.2.4 Covalent Organic Frameworks
5.3 Characterizations for Polymer Electrode Materials
5.3.1 Solid-State NMR
5.3.1.1 Ex situ NMR
5.3.1.2 In situ NMR
5.3.2 FTIR
5.3.2.1 Ex situ FTIR
5.3.2.2 In situ FTIR
5.4 Summary and Outlook
References
6. Transition Metal Dichalcogenides as Active Anode Materials for Sodium-Ion Batteries
6.1 Introduction
6.2 Structure of Transition Metal Dichalcogenides
6.3 Electronic Properties of TMDs
6.4 Preparation Methods of TMDs
6.4.1 Top-Down Synthesis Techniques
6.4.2 Bottom-Up Synthesis Techniques
6.5 TMDs as Anode Electrodes for SIBs
6.5.1 Sulfide-Based TMDs
6.5.2 Selenide-Based TMDs
6.6 Conclusion and Outlook
References
7. Effect of Polymeric Binders on the Sodium-Ion Storage Performance of Positive and Negative Electrode Materials
7.1 Introduct on
7.2 Binders for Electrode Materials in Battery
7.2.1 Physical Propert es of PVDF Binder
7.2.2 Polytetrafluoroethylene
7.2.3 Sodium Carboxymethyl Cellulose
7.2.4 Sodium Alginate
7.2.5 Polyacrylic Acid
7.3 Method of Making Slurry for Electrode Materials
7.3.1 Hydrodynamic Shear Mixing
7.3.2 Ball Milling
7.4 Effect of Slurry Preparat on Process on Electrode Morphology
7.5 Binders for Anode Materials for Sodium-Ion Batteries
7.5.1 Binders for Carbon-Based Anode Materials
7.5.2 Binders for Conversion-Based Anode Materials
7.6 Binders for Cathode Materials for Sodium-
7.7 Conclusion
References
8. Organic Liquid Electrolytes for Sodium-Ion Batteries
8.1 Introduct on
8.2 Characterist cs of Organic Liquid Electrolytes
8.2.1 Ionic and Electronic Conduct vity
8.2.2 Electrochemical Stability
8.2.3 Thermal Stability
8.3 Chemical Composit ons of Organic Liquid Electrolytes
8.3.1 Sodium Salts
8.3.2 Solvents
8.3.2.1 Carbonate ester-based electrolytes
8.3.2.1.1 Interac on behavior of Na ions with carbonate ester solvents
8.3.2.1.2 Reduc on of the carbonate ester-based electrolytes
8.3.2.1.3 Electrochemical compa bility with electrodes
8.3.2.2 Ether-based electrolytes
8.3.3 Addit ves
8.3.3.1 Film-format on addit ves
8.3.3.2 Flame-retardant addit ves
8.3.3.3 Overcharge protect on addit ves
8.4 Summary and Outlook
Acknowledgment
References
9. Cycling Stability of Sodium-Ion Batteries in Analogy to Lithium-Ion Batteries
9.1 Introduct on
9.2 Electrolytes
9.2.1 Electrolyte Degradat on at Anode (Negat ve Electrode)
9.2.2 Electrolyte Degradat on at Cathode (Posit ve Electrode)
9.2.3 Degradat on of SEI Layer
9.3 Failure of Anode
9.3.1 Pulverizat on
9.3.2 Delaminat on
9.3.3 Sodium Plat ng and Dendrite Format on
9.4 Cathodes
9.4.1 Material Degradat on
9.4.1.1 Dissolut on of transit on metals
9.4.1.2 Oxygen evolut on at elevated temperatures
9.4.2 Phase Change
9.4.2.1 Permanent phase changes due to over- or under charging
9.4.2.2 Permanent phase change due to anisotropic stress
9.4.2.3 Amorphizat on of crystalline structures
9.4.3 Foreign Molecule Inclusion/Intercalat on
9.5 Concluding Remarks
References
10. Atomistic Modeling and Analysis of Electrolyte Properties for Sodium-Ion Batteries
10.1 Introduction
10.2 Computational Methods
10.2.1 DFT Simulations of Electrolyte Properties
10.2.2 MD Simulations of Electrolyte Properties
10.2.3 Available Software
10.3 Liquid Electrolytes
10.3.1 Electrochemical Stability
10.3.2 Solvation Structures
10.3.3 Transport Properties
10.4 Polymeric Solid Electrolytes
10.5 Ceramic Solid-State Electrolytes
10.5.1 NASICON
10.5.2 Anti-perovskites
10.5.3 Thiophosphates
10.6 Summary
References
11. Product on, Characterist c, and Development of Separators
11.1 Introduct on
11.2 Separator Preparat on Technology
11.2.1 Electrospinning and Electrostat c Spraying
11.2.1.1 Principle
11.2.1.2 Influencing factors
11.2.1.3 Method evaluat on
11.2.2 Phase Inversion Method
11.2.2.1 Principle
11.2.2.2 Classify
11.2.2.3 Preparat on process
11.2.2.4 Method evaluat on
11.2.3 Stretching Method
11.2.3.1 Dry stretching method
11.2.3.2 Wet stretching method
11.2.3.3 Comparison of dry and wet methods
11.2.4 Solid Part cle Sintering Method
11.2.4.1 Principle
11.2.4.2 Influencing factors
11.2.5 Melt-Blown Spinning Process
11.2.5.1 Principle
11.2.5.2 Process
11.2.5.3 Influencing factors
11.2.6 Coat ng
11.2.6.1 Coat ng method
11.2.7 Wet Papermaking
11.2.8 Magnetron Sputtering Method
11.3 Performance Indexes and Test Techniques of Separators
11.3.1 Thickness
11.3.1.1 Micrometer
11.3.1.2 Scanning electron microscope
11.3.1.3 Atomic force microscope
11.3.1.4 Other methods
11.3.2 Porosity
11.3.2.1 Suct on method
11.3.2.2 Direct calculat on method
11.3.2.3 Instrument test method
11.3.3 Average Pore Size and Size Distribut on
11.3.3.1 Mercury porosimeter
11.3.3.2 Capillary flow porometer
11.3.3.3 N2 isothermal adsorpt on and desorpt on curves
11.3.4 Mechanical Propert es
11.3.4.1 Universal electronic tension machine
11.3.4.2 Tension tester
11.3.5 Wettability
11.3.5.1 Weighing method (electrolyte uptake)
11.3.5.2 Time method (electrolyte immersed height)
11.3.5.3 Instrument test method: contact angle
11.3.6 Thermal Stability
11.3.6.1 Thermal shrinkage
11.3.6.2 Different al scanning calorimetry
11.3.6.3 Thermogravimetric analysis
11.3.7 Electrochemical Performance
11.3.7.1 Linear sweep voltammetry
11.3.7.2 Electrochemical impedance spectroscopy
11.3.7.3 Ionic conduct vity
11.3.7.4 Ion diffusion coefficient
11.3.7.5 Ion transference number
11.4 Components and Development of Separators
11.4.1 Analysis of Separator Components
11.4.1.1 Polyolefin separator
11.4.1.2 Glass fiber
11.4.1.3 Polyvinylidene fluoride and its copolymers
11.4.1.4 Polyimide
11.4.2 Requirements and Development Status of Separators
11.4.2.1 Requirements of separators
11.4.2.2 Development status of separators
11.5 Influence of Separators on Battery Performances
11.5.1 Electrochemical Performance
11.5.1.1 Influence on voltage
11.5.1.2 Influence on internal resistance
11.5.2 Safety Performance
11.5.2.1 Influence on heat resistance
11.5.2.2 Influence on mechanical safety performance
11.5.2.3 Influence on dendrit c inhibit on
11.5.2.4 Improved strategy
11.6 Future Research Direct on of Separators
11.6.1 Electrode-Separator Integrat on Product on
11.6.2 Intelligent Response of Separators
11.6.2.1 Voltage-response separator
11.6.2.2 Self-ext nguishing separator
References
12. Advanced Electron Microscopy Characterization of Sodium-Ion Battery Materials
12.1 Introduction
12.2 High-Resolution Scanning TEM and Electron Energy Loss Spectroscopy
12.2.1 HRSTEM and EELS for NIB Characterization
12.2.2 In operando TEM
12.2.3 In operando TEM for NIB Characterization
12.2.3.1 Carbonaceous materials
12.2.3.2 Phosphorus and Phosphorene
12.2.3.3 Metal oxides
12.2.3.4 Metal chalcogenides
12.2.3.5 Others
12.2.3.6 Metalloids
12.2.3.7 Conclusion
12.3 Emerging Tools for NIB Characterization
12.3.1 Cryo-TEM
12.3.2 4D STEM and Electron Holography
12.3.3 Electron Tomography
12.4 Future Outlook
References
13. Synchrotron Radiation-Based X-Ray Characterizations of Sodium-Ion Battery
13.1 Introduction
13.1.1 Challenges in SIBs
13.2 Synchrotron-Radiation-Based X-Ray Characterizations in SIBs
13.2.1 Synchrotron-Radiation-Based X-Ray Diffraction
13.2.1.1 Phase and structure evolution monitoring
13.2.1.2 Thermal stability analysis
13.2.1.3 Pair distribution function
13.2.1.4 Joint use of SXRD and neutron diffraction
13.2.2 Synchrotron-Radiation-Based X-Ray Absorption Spectroscopy
13.2.2.1 Hard X-ray absorption spectroscopy (hXAS)
13.2.2.1.1 Local and electronic structure analysis
13.2.2.1.2 Monitoring charge compensation
13.2.2.1.3 Dynamic study by using in situ/in operando hXAS
13.2.2.2 Soft X-ray spectroscopy
13.2.2.2.1 Probing electron/valence state of electrode materials
13.2.2.2.2 Investigate surface chemical by sXAS and XES
13.2.2.2.3 Redox mechanism monitoring
13.2.2.2.4 sXAS and RIXS applied for oxygen redox reaction probing
13.2.3 Synchrotron Radiation-Based X-Ray Photoelectron Spectroscopy
13.2.3.1 Hard X-ray photoelectron spectroscopy
13.2.3.1.1 SEI/CEI composition analysis and evolution probing
13.2.3.1.2 Redox process monitoring
13.2.3.1.3 Evaluation of electrolyte additive effect
13.2.3.2 Soft X-ray photoelectron spectroscopy
13.2.3.2.1 Surface layer evolution monitoring
13.2.3.2.2 Evaluation of binder effect
13.2.4 Synchrotron Radiation-Based X-Ray Imaging Techniques
13.2.4.1 Applications of transmission X-ray microscopy in SIBs
13.2.4.1.1 Research on morphological changes
13.2.4.1.2 Phase transformation monitoring and elemental distribution analysis
13.3 Conclusion and Outlook
Acknowledgment
References
Index