توضیحاتی در مورد کتاب Handbook of Solid State Batteries
نام کتاب : Handbook of Solid State Batteries
ویرایش : 2
عنوان ترجمه شده به فارسی : کتاب راهنمای باتری های حالت جامد
سری : Materials and Energy 6
نویسندگان : Nancy J. Dudney, William C West, Jagjit Nanda
ناشر : World Scientific
سال نشر : 2015
تعداد صفحات : 835
ISBN (شابک) : 9789814651899 , 9814651893
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 94 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Contents
Preface
Part 1. Enabling Techniques and Fundamentals of Solid State Systems
Chapter 1. Fundamental Aspects of Ion Transport In Solid Electrolytes
1. Introduction
2. Defects and Disorders
2.1. Types of Defects
2.2. Expressions for Defect Concentration
2.3. Lattice Disorder and Association of Defects
3. Structural Features
3.1. Interstitial Motion in Body Centered Cubic (BCC) Structure
3.2. Interstitial Motion in Rutile Structure
3.3. Other Materials with Unidirectional Tunnels
3.4. Materials with Fluorite and Antifluorite Structures
3.5. Materials with Layered Structures
3.6. Materials with 3D Arrays of Tunnels
3.7. Structures with Isolated Tetrahedra
4. Mechanisms of Ion Transport
4.1. Microscopic Aspects of Diffusion—The Jump Mechanism
4.2. Models of Ionic Motion
4.3. Phenomenological Description of Diffusion
4.3.1. Fick’s Laws and Diffusion Equations
4.3.2. Modified Fick’s First law and the Nernst–Einstein Equation
4.4. Diffusion Coefficients
4.4.1. Self and Isotope Diffusion Coefficient
4.4.2. Defect Diffusion Coefficient
4.4.3. Chemical Diffusion Coefficient
4.4.4. Haven Ratio
4.5. Measurement of Diffusion Coefficients
4.5.1. Tracer Method
4.5.2. NMR Method
4.5.3. Electrochemical Methods
4.5.3.1. Chronoamperometry
4.5.3.2. Galvanostatic (or current step) Method
5. Ionic Conduction
5.1. Phenomenological Description of Ionic Conduction
5.2. Electrochemical Potential Gradient and a Generalized Formalism for Diffusion and Conduction
5.3. Measurement of Total Ionic and Electronic Conductivity
5.3.1. Direct Current Measurements
5.3.2. Alternating Current Measurements
5.3.2.1. Electrical Equivalent Circuits for the Electrode/Electrolyte Interface
5.3.2.2. Analysis of Impedance Data
5.4. Separation of Ionic and Electronic Conductivity
5.5. Methods of Determining the Transference Number
6. Thermodynamic and Kinetic Measurements on Solid Electrolyte Cells
6.1. Thermodynamic Measurements from Electrochemical Cells
6.1.1. Stability of the electrolyte
6.2. Determination of Thermodynamic Parameters by Conventional Methods
6.2.1. Specific heat or heat capacity
6.3. Comparison of Solid Electrolyte Method with Other Methods for Thermodynamic Measurements
6.4. Kinetic Measurements
6.5. Factors Limiting the Applicability of Solid Electrolyte Cells for Thermodynamic/Kinetic Measurements
References
Chapter 2. In-situ Neutron Techniques for Lithium Ion and Solid-State Rechargeable Batteries
1. Introduction
2. Neutron Powder Diffraction
3. Neutron Reflectivity
4. Neutron Depth Profiling
5. Conclusions and Outlook
Acknowledgments
References
Chapter 3. Synchrotron X-ray Based Operando Studies of Atomic and Electronic Structure in Batteries
1. Introduction
2. Operando Measurements
3. Why Synchrotron Sources?
4. Synchrotron Based Core-Hole Spectroscopic Methods
5. Design of XAS Experiments for Batteries
5.1. The Complementary Aspects of XAS Using Hard Versus Soft X-rays
6. A Detailed Discussion of Operando XAS Experiments for the Study of Batteries
6.1. Information in XANES and XAS
6.2. Reaction Mechanisms
7. Other Synchrotron X-ray Methods Applied to Battery Chemistries
7.1. Synchrotron Based X-ray Diffraction (XRD)
7.2. Bridging between Soft and Hard X-ray Regimes: Perspectives on X-ray Raman
8. Conclusion and Future Directions
References
Chapter 4. Analytical Electron Microscopy — Study of All Solid-State Batteries
1. Introduction
2. FIB Fabrication and Electrochemical Biasing of Nano-Batteries
3. Beam Damage Control in TEM/STEM
4. Design of TEM/STEM Biasing Holders
5. In-situ Analytical Characterization of Nano-Batteries using Imaging, Diffraction, and Spectroscopy
6. Future Perspectives—Opportunities and Challenges
Acknowledgments
References
Chapter 5. Li-ion Dynamics in Solids as Seen Via Relaxation NMR
1. Introduction
1.1. Basics of NMR Relaxation
1.1.1. Influence of diffusion on NMR resonance lines
1.1.2. Influence of diffusion on NMR SLR
1.1.3. 7Li SAE NMR— probing single-spin hopping correlation functions via stimulated echoes
2. Case Studies on Crystalline and Nanocrystalline Li Ion Conductors
2.1. Layer-Structured Materials: Spatially Confined Lithium Diffusion
2.1.1. Titanium disulfide —a model system for 2D diffusion
2.1.2. Lithium niobium sulfide and lithium borohydride: 2D Li diffusion as probed by frequency-dependent NMR relaxation
2.1.3. Graphite-based anodes: Li diffusion in ordered LiC6
2.2. Non-Graphitic Anode Materials
2.2.1. NMR relaxation rates of polycrystalline Li4+xTi5O12
2.2.2. Very fast Li ion dynamics in (high capacity) Li–Si binary alloys
2.3. Oxides and Sulfides as Promising Solid Electrolytes
2.3.1. Li ion conducting garnets
2.3.2. Li-containing argyrodite-type conductors
2.4. Nanostructured Oxides Prepared by High Energy Ball Milling
2.4.1. Single-phase nanocrystalline LiTaO3
2.4.2. Two-phase nanocrystalline Li2O:Al2O3
3. Summary and Outlook
Acknowledgment
References
Chapter 6. Crystalline Inorganic Solid Electrolytes: Computer Simulations and Comparisons with Experiment
1. Introduction and Overview
1.1. Computational Methods
1.2. Validation
2. Li Phosphate, Phospho-Nitride and Thiophosphate Crystalline Electrolytes
2.1. Heats of Formation
2.2. Structural Forms of Crystalline Electrolytes
2.2.1. Monomer-Structured Materials
2.2.2. Dimer-Structured Materials
2.2.3. Chain-Structured Materials
2.3. Li Ion Mobilities in Crystalline Electrolytes
3. Li Oxide Garnet Electrolytes
3.1. Two-Phase Garnet Oxides
3.2. Dopant Site Preference
3.3. The Role of Dopant-Induced Vacancies
3.4. Fundamental Mechanisms of the Phase Transition
3.5. Li Diffusion
3.6. Optimizing the Doping Scheme
4. Concluding Remarks
Acknowledgements
References
Part 2. Novel Solid Electrolyte Systems and Interfaces
Chapter 7. Designing Solid Polymer Composite Electrolytes for Facile Lithium Transport and Mechanical Strength
1. Introduction
2. Polymer Composites with Insulating Fillers
3. Polymer Composites with Conductive Fillers
4. Characterization of Interfacial Charge Transport
5. Modeling
6. Conclusion
References
Chapter 8. Fluoride-Ion Conductors
1. Introduction
2. Ionic Conduction in Solids
3. Fluoride Ion Conductors
3.1. Fluorite-type Fluoride Ion Conductors
3.1.1. Structure of fluorite-type fluorides
3.1.2. Ionic conductivity in fluorite-type fluorides
3.1.3. Effect of Nanostructuring in fluorite-type fluorides
3.1.4. Ion conduction mechanism in fluorite-type fluorides
3.2. Tysonite-type Fluorides
3.2.1. Structure of tysonite-type fluorides
3.2.2. Ionic conductivity in tysonite-type fluorides
3.2.3. Effect of nanostructuring in tysonite-type fluorides
3.2.4. Ion conduction mechanism in tysonite-type fluorides
3.3. Lead and Tin Based Fluoride-Ion Conductors
3.4. Pb and Sn Containing Phases
3.5. Bismuth and Antimony Based Fluoride-Ion Conductors
4. Perspectives
Acknowledgments
References
Chapter 9. Thin Film Lithium Electrolytes
1. Introduction: Methods for Electrolyte Film Growth
2. Examples of Materials Fabricated as Thin Film Electrolytes
2.1. A-Site Deficient Perovskites
3. Lithium Phosphorous Oxynitride (Lipon) & Related Glass Electrolyte Films
3.1. Garnet-type
3.2. Other Oxides
3.3. Sulfide electrolytes
4. Thin Film Electrolytes by Electro-Chemical Polymerization
5. Conclusion: Future Prospects
References
Chapter 10. Solid Electrode–Inorganic Solid Electrolyte Interface for Advanced All-Solid-State Rechargeable Lithium Batteries
1. Introduction
2. Measurement of the Charge-Transfer Resistance (Rct )
3. Fundamental Directions to Reduce the Charge-Transfer Resistance
3.1. Thermodynamic Aspect of Charge-Transfer Resistance
3.2. Activation Energy
3.3. Pre-Exponential Factor
4. Practical Approaches for Reducing the Charge-Transfer Resistance at the Electrode/Solid Electrolyte Interface
4.1. Interface Modification
4.2. In-situ Formation
4.2.1. In-Situ Formation of a Lithium Metal Anode
4.2.2. In-situ Formation of Lithium Insertion Electrode Material
4.3. Other Approaches
5. Recent Analytical Methods of Electrode/Solid Electrolyte Interface
6. Summary
References
Chapter 11. Crystalline Sulfide Electrolytes for Li-S Batteries
1. Introduction
2. Structures of Crystalline Sulfide Electrolytes
3. Addressing the Air and Moisture Sensitivity of thio-LISICON
4. Densification of thio-LISICON Membranes
5. Solid-State Batteries Based on Sulfide Electrolytes
5.1. Anode Compatibility
5.2. Cathode Compatibility
6. Conclusion and Future Directions
Acknowledgement
References
Chapter 12. Super-ionic Conducting Oxide Electrolytes
1. Overview
2. Introduction
2.1. NASICON
2.2. Perovskite
2.3. Garnet
3. SCO Membrane Fabrication
4. Electrochemical and Chemical Stability
5. Mechanical Properties
6. Solid-state Battery Design and Fabrication
7. Conclusion
References
Chapter 13. Interface of 4V Cathodes with Sulfide Electrolytes
1. Introduction
2. History of Solid-State Lithium Batteries with Sulfide Electrolytes
3. Interface to 4 V Cathodes
3.1. Nanoionics in Solid-State Lithium Batteries
3.2. Interface Design to Reduce Electrode Resistance
4. Construction of Interface Structures with Buffer Layer
4.1. Surface Coating of Active Materials
4.2. Two-Dimensional (2D) Coating Material
4.3. Self-Organized Core–Shell Structure
5. Conclusions and Outlook
Acknowledgments
References
Chapter 14. Glass and Glass-Ceramic Sulfide and Oxy-Sulfide Solid Electrolytes
1. Introduction
2. General Overview of Glass Structure and the Effects of Composition
2.1. Salt doping to increase the ionic conductivity
2.2. Mixing the Glass Forming Cations to Increase the Ionic Conductivity
2.3. Mixing the Glass Forming Anions to Increase the Ionic Conductivity
3. General Mechanisms of Ion Conduction in Glass
4. Sulfide Glass Solid Electrolytes
4.1. Binary Sulfide Alkali Ion Conducting Glasses
4.1.1. Binary Alkali Thiophosphate Glasses
4.1.1.1. Lithium systems
4.1.1.2. Sodium and heavier alkali systems
4.1.1.3. Silver and copper systems
4.2. Binary Alkali Thiosilicate Glasses
4.2.1. Lithium systems
4.2.2. Sodium and the heavy alkali thiosilicate glasses
4.3. Binary Alkali Thiogermanate Glasses
4.3.1. Lithium and sodium systems
4.4. Binary Alkali Thioborate Glasses
4.4.1. Lithium and sodium systems
5. Glass-Ceramic Solid Electrolytes
6. Conclusions and Outlook
Acknowledgments
References
Chapter 15. Crystalline Polymer Electrolytes
1. Introduction
2. Discovery of Crystalline Polymer Electrolytes
3. Crystal Structure
4. MolecularWeight of the Polymer
5. Doping
5.1. Isovalent Anionic Doping
5.2. Aliovalent Anionic Doping
5.3. Polymer Doping
6. Polymer Chain Ends
7. Dispersity of Polymer Chain Lengths
8. Conduction in Crystalline Polymer Electrolytes
9. Crystalline Polymer Electrolytes in Lithium and Sodium Ion Batteries
References
Chapter 16. Polymer Electrolytes
1. Introduction
2. Applications of Polymer Electrolytes
3. Survey of Polymer Electrolytes
3.1. Solvent-free SPEs
3.2. Plasticized and Gel Polymer Electrolytes (GPE)
4. Preparation Methods for Polymer Electrolytes
5. Characterization and Mechanisms
5.1. Thermal Analysis
5.2. Rheology
5.3. Vibrational— IR and Raman Spectroscopy Techniques
5.4. Diffraction Techniques
5.5. Scanning Electron Microscopy (SEM)
5.6. Conductivity Measurements
5.7. Nuclear Magnetic Resonance
5.8. Modeling and Theory
6. Implementation of Polymer Electrolytes in Solid-State Batteries
6.1. Microelectronic Batteries
6.2. Consumer Electronics
6.3. Electric Vehicles
7. Summary and Outstanding Issues Limiting Application
Acknowledgment
References
Part 3. Devices and 3D Architectures
Chapter 17. All Solid-State Thin Film Batteries
1. Introduction
2. Fabrication Methods
3. Components of Thin Film Batteries
3.1. Cathodes
3.2. Electrolytes
3.3. Anodes
3.4. Current Collectors and Encapsulations
4. Cell Studies
5. Applications and Outlook
References
Chapter 18. Advancing Conversion Electrode Reversibility with Bulk Solid-State Batteries
1. Introduction
2. Background
2.1. Intercalation versus Conversion
2.2. Strategies for Improving FeS2 and S Reversibility in Conventional Liquid Batteries
2.3. Solid-State Electrolytes
3. Mechanically Prepared Solid-State Composite Electrodes
4. Reduction of Sulfur in Solid-State
5. Solid-Solid Interfaces
6. Methods for Increasing Energy Density
6.1. Sulfur-Carbon Composites
6.2. New Composite Electrode Processing Technologies
6.3. Electrochemical Utilization of the Solid-State Electrolyte
7. Future Perspectives
Acknowledgments
References
Chapter 19. Structural Batteries, Capacitors and Supercapacitors
1. Abstract
2. Introduction
3. Multi-functional Efficiency
3.1. Multi-functional Definition and Design Rules
3.2. Integrating Functions
4. Approaches for Creating Multi-functional Energy Storage Devices
4.1. Conventional Approach
4.2. Conformable Approach
4.3. Embedded Approach
4.4. Structural Approach
5. Development of Structural Energy Storage Devices
5.1. Structural Capacitors
5.2. Structural Battery, Supercapacitor and Pseudocapacitor
5.2.1. Component Materials
5.2.2. Structural Devices
5.2.3. Ongoing Research
6. Conclusions
References
Chapter 20. Three-dimensional Batteries
1. Introduction
2. 3D Battery Designs: Strengths andWeaknesses
2.1. General Design Considerations
2.2. 3D Battery Designs: Strengths andWeaknesses
3. Results for 3D Battery Designs
3.1. Extended Thin Film Configurations
3.2. Interdigitated Architectures
3.3. Inverse Opal Geometries
3.4. Aperiodic Structures
3.5. Concentric Tube Designs
4. Future Directions and Conclusions
Acknowledgments
References
Chapter 21. Electrochemical Simulations of 3D-Battery Architectures
1. Introduction
1.1. What is Electrochemical Battery Modelling?
1.2. A Brief Description of 3D-Batteries
2. Mathematical Models of the Li-ion Battery
2.1. The Concentrated Solution Theory
2.1.1. Potential and Concentration in the Electrodes
2.1.2. Modelling the Electrolyte using the Nernst–Planck Equation
2.2. The Finite Element Method
2.2.1. Mesh
2.2.2. Finite Elements
2.3. Current Trends in Li-Battery Modelling
3. Modelling 3D-Batteries
3.1. Different 3D-Batteries Investigated
3.2. Optimization of 3D-Architectures
4. Insights Into 3D-MB Cell Performance
4.1. The 3D-MB Current Distribution
4.2. Impact of Electrode Materials
4.3. 3D-MB Geometry Optimization by Redistribution of Electrode Material
4.4. Geometry Optimization by Electrode Rearrangements
4.5. The Choice of Electrolyte
4.6. Structural Topology Optimization of the 3D-MB
5. Conclusion and Future Outlook
Abbreviations and Symbols
References
Chapter 22. Silver Ion Conducting Electrolytes and Silver Solid-State Batteries
1. Introduction
2. Electrolyte Development
2.1. Crystalline Ag Ion Conductors
2.2. Amorphous Ag Ion Conductors
3. Ion Mobility
3.1. Crystalline Ag Ion Conductors
3.2. Glassy Ag Ion Conductors
3.3. Doped Polymer Ion Conduction
4. Silver Solid-State Batteries
5. Outlook
Acknowledgments
References
Index