توضیحاتی در مورد کتاب Handbook of Statistical Methods for Randomized Controlled Trials
نام کتاب : Handbook of Statistical Methods for Randomized Controlled Trials
عنوان ترجمه شده به فارسی : کتابچه راهنمای روش های آماری برای کارآزمایی های تصادفی کنترل شده
سری : Chapman & Hall/CRC Handbooks of Modern Statistical Method
نویسندگان : KyungMann Kim, Frank Bretz, Ying Kuen K. Cheung, Lisa V. Hampson
ناشر : Chapman and Hall/CRC
سال نشر : 2021
تعداد صفحات : 655
ISBN (شابک) : 1498714625 , 9781498714624
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 14 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
مفاهیم آماری چارچوب علمی را در مطالعات تجربی، از جمله کارآزماییهای تصادفیسازی و کنترلشده، فراهم میکنند. به منظور طراحی، نظارت، تجزیه و تحلیل و نتیجهگیری علمی از این قبیل کارآزماییهای بالینی، محققین بالینی و آماردانان باید درک محکمی از مفاهیم آماری مورد نیاز داشته باشند. هندبوک روش های آماری برای کارآزمایی های تصادفی شده کنترل شده این مفاهیم آماری را در یک توالی منطقی از ابتدا تا انتها ارائه می دهد و می تواند به عنوان کتاب درسی در یک دوره یا به عنوان مرجعی در مورد روش های آماری برای کارآزمایی های تصادفی شده کنترل شده استفاده شود.
بخش اول یک پیشینه تاریخی مختصر در مورد کارآزماییهای تصادفیسازی و کنترلشده مدرن ارائه میدهد و مفاهیم آماری مرکزی برای برنامهریزی، نظارت و تجزیه و تحلیل کارآزماییهای تصادفیسازی شده کنترلشده را معرفی میکند. بخش دوم روشهای آماری را برای تجزیه و تحلیل انواع مختلف پیامدها و توزیعهای آماری مرتبط مورد استفاده در آزمون فرضیههای آماری در رابطه با سؤالات بالینی توصیف میکند. بخش سوم برخی از پرکاربردترین طرحهای تجربی را برای کارآزماییهای تصادفیسازی و کنترلشده از جمله تخمین حجم نمونه لازم در برنامهریزی توصیف میکند. بخش IV روش های آماری مورد استفاده در تجزیه و تحلیل موقت برای نظارت بر داده های اثربخشی و ایمنی را شرح می دهد. بخش پنجم مسائل مهم در تجزیه و تحلیل های آماری مانند آزمایش های چندگانه، تجزیه و تحلیل زیر گروه ها، ریسک های رقابتی و مدل های مشترک برای نشانگرهای طولی و نتایج بالینی را شرح می دهد. بخش ششم به موضوعات متفرقه منتخب در طراحی و تجزیه و تحلیل میپردازد، از جمله کارآزماییهای تصادفیسازی تخصیص چندگانه، تجزیه و تحلیل نتایج ایمنی، کارآزماییهای غیر حقارت، ترکیب دادههای تاریخی، و اعتبارسنجی نتایج جایگزین.
فهرست مطالب :
Cover
Half Title
Series Page
Title Page
Copyright Page
Dedication
Contents
Preface
List of Figures
List of Tables
Contributors
I. Introduction to Randomized Controlled Trials
1. Introduction
1.1. Historical Background
1.2. Statistical Concepts
1.3. Organization of the Handbook
Bibliography
II. Analytic Methods for Randomized Controlled Trials
2. Binary and Ordinal Outcomes
2.1. Introduction
2.2. Analysis of 2 x 2 Contingency Tables
2.3. Analysis of R x C Contingency Tables
2.4. Analysis of Stratified 2 x 2 Contingency Tables
2.5. Regression Models for Binary Outcomes
2.5.1. Logistic regression
2.5.2. Estimation and inference for logistic regression
2.5.3. Exact logistic regression
2.5.4. Example
2.6. Regression Models for Ordinal Outcomes
2.6.1. Proportional odds model
2.6.2. Some alternative models for ordinal outcomes
2.6.3. Example
2.7. Adjustment for Baseline Response
2.8. Concluding Remarks
Bibliography
3. Continuous Outcomes
3.1. Introduction
3.2. The t-Test (One Population)
3.3. The t-Test (Two Populations)
3.4. Mann-Whitney U-Test
3.5. Paired Tests
3.5.1. Paired t-test
3.5.2. Wilcoxon signed rank test
3.6. Multiple Comparisons
3.7. Regression
3.7.1. Residuals
3.7.2. Inference for linear regression
3.7.3. ANCOVA models
3.7.4. Nonlinear regression
3.8. Conclusion
Bibliography
4. Time to Event Data
4.1. Introduction
4.2. ACTG 320
4.3. Mathematical Fundamentals
4.3.1. Notation
4.3.2. Hazard
4.3.3. Censoring and observed data
4.4. Estimation of Survival Distribution
4.5. Hypothesis Testing
4.6. Cox Regression Model
4.7. Informative Censoring
4.8. Conclusion
Bibliography
5. Count Data
5.1. Introduction
5.2. Regression Analysis of Simple Count Data
5.2.1. Poisson regression for count
5.2.2. Negative binomial regression for count
5.2.3. Poisson and negative binomial regression for rate
5.2.4. Other models for simple count data
5.3. Regression Analysis of Correlated Count Data: Likelihood-Based Approaches
5.3.1. Maximum pseudo-likelihood estimation for the Poisson model
5.3.2. Maximum likelihood estimation for the Poisson model
5.3.3. Maximum likelihood estimation for the negative binomial model
5.4. Regression Analysis of Correlated Count Data: Distribution-Free Approaches
5.4.1. Conditional estimating equation method
5.4.2. Unconditional estimating equation method
5.4.3. Analysis of the National Cooperative Gallstone Study
5.5. Discussion and Concluding Remarks
Bibliography
6. Longitudinal Data
6.1. Introduction
6.2. Generalized Linear Models
6.3. Generalized Estimating Equations
6.3.1. Notations
6.3.2. Asymptotic properties
6.3.3. Efficiency
6.3.4. Model selection criterion in GEE
6.4. Generalized Linear Mixed Models
6.4.1. Notations
6.4.2. Population average versus subject-specific model
6.4.3. Estimation procedures
6.4.3.1. Marginal likelihood
6.4.3.2. Conditional likelihood
6.5. Test Statistics Under Randomization
6.5.1. Notations
6.5.2. Score-type test for GEE under randomization
6.5.3. Score test for GLMMs under randomization
6.6. Handling Missing Data in Clinical Trials
6.6.1. Missing data in GEE
6.6.2. Missing data in GLMMs
6.7. Case Study
Bibliography
7. Recurrent Events
7.1. Introduction
7.1.1. Recurrent event data
7.1.2. Data from a cystic fibrosis Trial
7.2. Notation and Model Formulation
7.2.1. Analysis considerations with recurrent event data
7.2.2. Methods based on rate and mean functions
7.2.3. Censoring, Likelihood, and Marginal Methods
7.2.4. Assessment based on exacerbations in cystic fibrosis
7.3. Sample Size Based on Proportional Rate Functions
7.3.1. Derivations under a negative binomial model
7.3.2. Illustrative sample size calculation
7.4. Other Considerations in Recurrent Event Analyses
7.4.1. Issues regarding causal inference
7.4.2. Marginal multivariate failure times models
7.4.3. Adaptive two-stage sample size estimation
7.4.4. Recurrent and terminal events
7.5. Discussion
Acknowledgments
Bibliography
III. Design of Randomized Controlled Trials
8. Cross-Over Designs
8.1. Introduction
8.2. Some Examples
8.2.1. Example 1 : An AB/BA design
8.2.2. Example 2: A design in three treatments, three periods, and six sequences
8.2.3. Example 3: An incomplete blocks design with fewer periods than treatments
8.2.4. Example 4: A replicate cross-over design with more periods than treatments
8.2.5. Example 5: A replicate bioequivalence study comparing two formulations in four periods
8.3. General Considerations
8.3.1. Phase of drug development
8.3.2. Suitable indications
8.4. Issues in Analysis
8.4.1. Models for cross-over trials
8.4.2. Patient effects and variance structures
8.4.3. Carry-over effects
8.4.4. Residual degrees of freedom and error estimation
8.5. Examples of Analysis
8.5.1. Basic estimator approach
8.5.2. Two-sample t-test approach
8.5.3. Linear and mixed models
8.5.4. Testing for carry-over
8.5.5. 8.5.5. An unbiased estimate of the treatment effect
8.5.6. The two-stage procedure
8.6. Issues in Design
8.6.1. Choosing sequences
8.6.2. Other issues
8.6.3. Planning the sample size
8.7. N-of-1 trials
8.8. Conclusion
8.9. Further reading
8.10. Acknowledgement
Bibliography
9. Factorial Designs
9.1. Introduction
9.2. Different Usages of Factorial Designs
9.2.1. Efficiency of confirmatory trials: Evaluation of more than one Intervention in a single study
9.2.2. Screening trials: Developing multicomponent interventions
9.2.3. Situations where factorial designs are not suitable
9.3. Full Factorial Designs: A Theoretical Background
9.4. Fractional Factorial Designs
9.5. Analysis Strategies
9.6. Follow-up Studies: Developing Multicomponent Interventions
9.7. Power and Sample Size Considerations
9.8. Discussion
Bibliography
10. Cluster Randomized Designs
10.1. What is a Cluster Randomized Trial?
10.2. The Problem of Clustering
10.3. Summary Statistics
10.4. The Intra-Cluster Correlation Coefficient and the Design Effect
10.5. Baseline and Other Adjustments
10.6. Robust Standard Errors
10.7. Multilevel Modeling
10.8. Generalized Estimating Equations (GEE) Models
10.9. Stepped Wedge Designs
10.10. Sample Size Estimation
10.11. Practical Problems of Cluster Randomized Trials
Bibliography
11. Randomization, Stratification, and Outcome-Adaptive Allocation
11.1. Introduction
11.2. Simple and Restricted Randomization
11.3. Stratified and Covariate-Adaptive Randomization
11.4. Outcome-Adaptive Randomization
11.5. Concluding Remarks
Bibliography
12. Background to Sample Size Calculations
12.1. Introduction
12.2. Types of Trials
12.2.1. Parallel group trials
12.2.2. Cross-over trials
12.3. Continuous Outcomes
12.3.1. Superiority trials
12.3.1.1. Parallel group trials
12.3.1.2. Quick results
12.3.1.3. Worked example 1
12.3.1.4. Cross-over trials
12.3.1.5. Quick results
12.3.1.6. Worked example 2
12.3.2. Equivalence trials
12.3.2.1. Parallel group trials
12.3.2.2. Worked example 3
12.3.2.3. Cross-over trials
12.3.2.4. Worked example 4
12.3.3. Non-inferiority trials
12.3.3.1. Parallel group trials
12.3.3.2. Worked example 5
12.3.3.3. Cross-over trials
12.3.3.4. Worked example 6
12.4. Binary Outcomes
12.4.1. Superiority trials
12.4.1.1. Parallel group trials
12.4.1.2. Method 2
12.4.1.3. Worked example 7
12.4.1.4. Cross-over trials
12.4.1.5. Worked example 8
12.4.2. Equivalence trials
12.4.2.1. Parallel group trials
12.4.2.2. Worked example 9
12.4.2.3. Cross-over trials
12.4.3. Non-inferiority trials
12.4.3.1. Parallel group trials
12.4.3.2. Worked example 10
12.5. Final Remarks
Bibliography
13. Sample Size Estimation and Power Analysis: Time to Event Data
13.1. Introduction
13.2. Methods for Sample Size Estimation and Power Analysis
13.2.1. Approaches relating to acquisition of events
13.2.2. Estimation of required number of events: no accounting of other design parameters
13.2.3. Estimation of required number of events: with accounting of other design parameters
13.3. Case Studies
13.3.1. Rare events with non-proportional hazard ratio
13.3.1.1. The study as designed
13.3.1.2. The study as it unfolded
13.3.1.3. Insights gleaned from the study
13.3.1.4. Alternative strategies
13.3.1.5. Alternative strategy example
13.3.2. An oncology study
13.3.3. A diabetes noninferiority study
13.4. Special Topics and Recent Developments
13.4.1. Treatment effects beyond hazard ratios
13.4.2. Sample size re-estimation
Bibliography
14. Sample Size Estimation and Power Analysis: Longitudinal Data
14.1. Introduction
14.2. Generalized Estimating Equations (GEE) Method
14.2.1. Continuous outcome variable case
14.2.2. Binary outcome variable case
14.3. Power Analysis and Sample Size Estimation
14.3.1. Continuous outcome variable case
14.3.2. Binary outcome variable case
14.4. Modelling Missing Pattern and Correlation Structure
14.4.1. Missing pattern
14.4.2. Correlation structure
14.5. Examples
14.5.1. Labor pain study (Continuous outcome case)
14.5.2. Design of an RCT based on GENISOS (binary outcome case)
14.6. Discussions
Bibliography
IV. Monitoring of Randomized Controlled Trials
15. Group Sequential Methods
15.1. Group Sequential Methods
15.1.1. A unified framework
15.1.2. Boundaries
15.2. The Effect of Monitoring on Power
15.3. Futility/Stochastic Curtailment
15.4. Problems with Post-Trial Inference
15.5. Conclusions
Bibliography
16. Sample Size Re-Estimation
16.1. Introduction
16.2. Nuisance Parameter Based Sample Size Re-Estimation
16.2.1. Sample size re-estimation for normal data
16.2.1.1. Motivating example
16.2.1.2. Statistical model and sample size re-estimation
16.2.1.3. Unblinded nuisance parameter estimation
16.2.1.4. Blinded nuisance parameter estimation
16.2.1.5. Comparison of sample size re-estimation procedures
16.2.2. Sample size re-estimation for count data
16.2.2.1. Motivating example
16.2.2.2. Negative binomial outcomes
16.2.3. Further issues and recent developments
16.2.3.1. Non-inferiority trials
16.2.3.2. Controlling the type I error rate
16.2.3.3. Size of the internal pilot study
16.2.3.4. Covariates
16.2.3.5. Other endpoints and more complex designs
16.2.3.6. Multi-arm trials
16.2.3.7. Incorporating historical data into the sample size re-estimation
16.3. Effect-Based Sample Size Re-Estimation
16.3.1. Controlling the type I error rate
16.3.2. Sample size adaptation
16.3.3. Further issues and recent developments
16.4. Discussion
Acknowledgements
Bibliography
17. Adaptive Designs
17.1. Introduction
17.2. General Principles
17.2.1. The combination testing principle
17.2.2. The closed testing principle
17.2.3. Adaptive designs for multiple hypotheses
17.2.4. Assessing the performance of an adaptive design
17.3. Treatment Arm Selection Designs
17.3.1. The procedure
17.3.2. Binary and survival endpoints
17.3.3. Case studies
17.4. Population Enrichment Designs
17.4.1. The procedure
17.4.2. Effect specification
17.4.3. Binary and survival endpoints
17.4.4. Case studies
17.5. Discussion and Further Developments
Acknowledgment
Bibliography
V. Practical Issues in Analysis of Randomized Controlled Trials
18. Multiple Testing
18.1. Error Rates in Multiple Comparisons
18.2. Principles of Multiple Testing
18.2.1. Partitioning principle
18.2.2. Closed testing principle
18.3. A Simple Example
18.4. Shortcutting
18.4.1. Holm's method is a shortcut
18.4.2. Hochberg's method is also a shortcut
18.5. Paths in Decision-Making
18.5.1. Decision path respecting principle
18.5.2. A specific dose x endpoint example
18.6. Setting Priorities in Multiple Testing for Each Study
18.6.1. The graphical approach
18.7. Logical Relationships Among Parameters Tested
18.7.1. Logic induced in multiple test construction
18.7.2. Logic inherent in scientific parameters
18.8. Going Forward
Bibliography
19. Subgroup Analysis
19.1. Introduction
19.2. Methods for Conducting Subgroup Analyses
19.2.1. Commonly used methods
19.2.2. Qualitative interaction
19.2.3. Graphical methods
19.2.4. Multivariate tests of interaction
19.3. Power Consideration of Subgroup Analysis
19.4. Subgroup Analysis Reporting and Interpretation
19.5. Final Remarks
Bibliography
20. Competing Risks
20.1. Introduction
20.2. Cumulative Incidence Function in the Presence of Competing Risks
20.2.1. Cumulative incidence function
20.2.2. Estimation of CIF in the presence of competing risks
20.3. Testing for Differences between Cumulative Incidence Curves in the Presence of Competing Risks
20.3.1. Gray test
20.3.2. Estimation of Gray statistic
20.4. Competing Risks Regression Analysis
20.4.1. Cause-specific hazard regression model
20.4.2. Fine and Gray model
20.4.3. Klein and Andersen model
20.4.4. Remarks
20.5. Conclusion
20.6. Computing Tools
Acknowledgements
Bibliography
21. Joint Models for Longitudinal and Time to Event Data
21.1. Introduction
21.2. Illustrative Example
21.3. Joint Shared Random-Effect Models
21.3.1. Model definition for Gaussian markers
21.3.2. Model definition for discrete markers
21.3.3. Estimation
21.3.3.1. Likelihood
21.3.3.2. Bayesian estimation
21.3.3.3. Model diagnostic
21.3.4. Joint shared random-effect models for clinical trials
21.3.4.1. Distinguishing direct and indirect treatment effects
21.3.4.2. Incomplete data
21.4. Joint Latent Class Models
21.4.1. Model definition
21.4.2. Estimation
21.4.2.1. Likelihood
21.4.2.2. Model diagnostic
21.4.3. Joint latent class models for clinical trials
21.5. Conclusion and Recent Developments
Acknowledgements
Bibliography
VI. Miscellaneous Topics in Randomized Controlled Trials
22. Design and Analysis Methods for Developing Personalized Treatment Rules
22.1. Introduction
22.2. Study Design
22.3. Analysis Techniques: Single Stage
22.4. Analysis Techniques: Multiple Stages
22.5. Related Topics
22.5.1. Variable selection
22.5.2. Multiple outcomes
22.5.3. DTRs for observational data
22.6. Conclusion
Bibliography
23. Safety Evaluation in Clinical Trials
23.1. Introduction
23.2. Elements of a Systematic Approach to Clinical Trial Safety Data Evaluation
23.2.1. The program safety analysis plan (PSAP)
23.2.2. Facilitating combining data across studies, including planning meta-analyses (be prepared)
23.3. Approaches to Characterizing the Product Safety Profile
23.3.1. Known or pre-specified safety issues
23.3.1.1. Specific safety issues that should always be considered for all products
23.3.1.2. Product-specific adverse events of special interest (AESIs)
23.3.1.3. Adverse events not specified in advance
23.3.2. Data sources for safety evaluation including specific safety studies
23.4. Planning for Clinical Data Collection and Standardization
23.4.1. Definition of safety outcomes and adjudication
23.4.2. Standardization of safety data collection
23.5. Safety Data Analysis and Reporting
23.5.1. Considerations for individual studies
23.5.1.1. Defining the safety analysis set
23.5.1.2. Accounting for time on or off treatment
23.5.2. Meta-analysis of adverse event data
23.5.3. Multiplicity
23.5.4. Signal detection for common events
23.5.5. Descriptive analysis of infrequent adverse events
23.5.6. Reporting
23.6. Conclusions
Bibliography
24. Non-Inferiority Trials
24.1. Background and History
24.2. Basics
24.2.1. Historical studies
24.2.2. Parameters and margins
24.2.3. Study design and conduct
24.2.4. Test statistics, confidence intervals and decision rules
24.2.5. Reporting and interpretation
24.2.6. Power and sample size assessment
24.2.7. Equivalence and non-inferiority
24.3. Issues and Evolving Ideas
24.3.1. Analysis sets
24.3.2. Missing data
24.3.3. Adaptive designs
24.4. Conclusions
Bibliography
25. Incorporating Historical Data into Randomized Controlled Trials
25.1. Introduction
25.2. Case Study
25.3. Meta-Analytic-Predictive Approach
25.3.1. Hierarchical model
25.3.2. Mixture approximation for priors
25.3.3. Robustness to a prior-data conflict
25.3.4. Prior effective sample size
25.3.5. Operating characteristics
25.3.6. Analysis
25.4. Other Approaches
25.4.1. Meta-analytic-combined approach
25.4.2. Bias models
25.4.3. Commensurate priors
25.4.4. Power priors
25.4.5. Test-then-pool
25.4.6. How much borrowing?
25.5. Extensions
25.5.1. Individual patient data and aggregate data
25.5.2. Non-inferiority trials
25.6. Discussion
25.7. Appendix
25.7.1. WinBUGS code
25.7.2. SAS code
Bibliography
26. Evaluation of Surrogate Endpoints
26.1. Introduction
26.2. Data from a Single Trial
26.2.1. Definition and criteria
26.2.2. The proportion explained
26.2.3. The relative effect
26.3. A Meta-analytic Framework for Normally Distributed Outcomes
26.3.1. A meta-analytic approach
26.4. Non-Gaussian Endpoints
26.4.1. Two binary endpoints
26.4.2. Two failure-time endpoints
26.4.3. An ordinal surrogate and a survival endpoint
26.4.4. Binary and normally distributed endpoints
26.4.5. Longitudinal endpoints
26.5. Alternatives and Extensions
26.6. Prediction and Design Aspects
26.7. Case Studies
26.7.1. A meta-analysis of five clinical trials in schizophrenia
26.7.1.1. Analysis of continuous endpoints
26.7.1.2. Analysis of the categorical endpoints
26.7.2. Prostate-specific antigen (PSA)
26.7.2.1. PSA as a surrogate in multiple trials
26.7.3. Surrogate endpoints in gastric cancer
26.7.3.1. Resectable gastric cancer: can DFS be used a surrogate for OS?
26.7.3.2. Advanced gastric cancer: can PFS be used as a surrogate for OS?
26.7.3.3. Contrasting conclusions about DFS and PFS
26.8. Concluding Remarks
Acknowledgment
Bibliography
Index
توضیحاتی در مورد کتاب به زبان اصلی :
Statistical concepts provide scientific framework in experimental studies, including randomized controlled trials. In order to design, monitor, analyze and draw conclusions scientifically from such clinical trials, clinical investigators and statisticians should have a firm grasp of the requisite statistical concepts. The Handbook of Statistical Methods for Randomized Controlled Trials presents these statistical concepts in a logical sequence from beginning to end and can be used as a textbook in a course or as a reference on statistical methods for randomized controlled trials.
Part I provides a brief historical background on modern randomized controlled trials and introduces statistical concepts central to planning, monitoring and analysis of randomized controlled trials. Part II describes statistical methods for analysis of different types of outcomes and the associated statistical distributions used in testing the statistical hypotheses regarding the clinical questions. Part III describes some of the most used experimental designs for randomized controlled trials including the sample size estimation necessary in planning. Part IV describe statistical methods used in interim analysis for monitoring of efficacy and safety data. Part V describe important issues in statistical analyses such as multiple testing, subgroup analysis, competing risks and joint models for longitudinal markers and clinical outcomes. Part VI addresses selected miscellaneous topics in design and analysis including multiple assignment randomization trials, analysis of safety outcomes, non-inferiority trials, incorporating historical data, and validation of surrogate outcomes.