توضیحاتی در مورد کتاب Handbook on Decision Making: Volume 3: Trends and Challenges in Intelligent Decision Support Systems
نام کتاب : Handbook on Decision Making: Volume 3: Trends and Challenges in Intelligent Decision Support Systems
ویرایش : 226, 1 ed.
عنوان ترجمه شده به فارسی : کتاب راهنمای تصمیم گیری: جلد 3: روندها و چالش ها در سیستم های پشتیبانی تصمیم گیری هوشمند
سری : Intelligent Systems Reference Library
نویسندگان : Julian Andres Zapata-Cortes, Cuauhtémoc Sánchez-Ramírez, Giner Alor-Hernández, Jorge Luis García-Alcaraz
ناشر : Springer
سال نشر : 2022
تعداد صفحات : 484
[466]
ISBN (شابک) : 9783031082450 , 9783031082467
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 16 Mb
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
این کتاب تکنیکها و متدولوژیهای مختلفی را ارائه میکند که برای بهبود فرآیند تصمیمگیری هوشمند و افزایش احتمال موفقیت در شرکتهای بخشهای مختلف مانند خدمات مالی، آموزش، زنجیره تامین، سیستمهای انرژی، خدمات بهداشتی و درمانی و... دیگران.
این کتاب شامل و ادغام مشارکتهای پژوهشی نوآورانه و با کیفیت بالا در خصوص اجرای تکنیکها و روشهای کاربردی در بخشهای مختلف است. حوزه انتشار دانش روندهای فعلی در اجرای تکنیک ها و روش های هوش مصنوعی در زمینه های مختلف مانند: لجستیک، توسعه نرم افزار، داده های بزرگ، اینترنت اشیا، شبیه سازی و غیره است. مطالب کتاب برای دکتری مفید است. محققین، Ph.D. دانشجویان، دانشجویان کارشناسی ارشد و کارشناسی رشته های مختلف مانند مهندسی صنایع، علوم کامپیوتر، سیستم های اطلاعاتی، تجزیه و تحلیل داده ها و غیره.
فهرست مطالب :
Preface
Acknowledgements
Contents
Contributors
Part I Methods and Techniques
1 A Vertical Fragmentation Method for Multimedia Databases Considering Content-Based Queries
1.1 Introduction
1.2 Background
1.3 State of the Art
1.4 Design of CBRVF
1.4.1 CBRVF
1.4.2 Web Application Design
1.5 Results and Discussion
1.6 Conclusion and Future Work
References
2 An Approach Based on Process Mining Techniques to Support Software Development
2.1 Introduction
2.2 Background
2.3 Related Work
2.4 Framework
2.4.1 Phase 1: Event Log Management
2.4.2 Phase 2: Process Model Discovery
2.4.3 Phase 3: Statistics
2.5 Results
2.5.1 Case of a Purchase Order Process
2.5.2 Case of an Air Quality Monitoring System Process
2.6 Conclusions
References
3 Analysis of Canonical Heuristic Methods for the Optimization of an Investment Portfolio
3.1 Introduction
3.2 Evolutionary Algorithms
3.3 Investment Portfolio
3.4 Theoretical Scaffolding
3.5 Genetic Algorithm
3.6 Differential Evolution
3.7 Artificial Immunological System
3.8 Methodology
3.9 Results
3.10 Conclusions
References
4 Design of a Dynamic Horizontal Fragmentation Method for Multimedia Databases
4.1 Introduction
4.2 Background
4.3 Related Works
4.4 Design of a Dynamic Horizontal Fragmentation Method for Multimedia Databases
4.5 Results and Discussion
4.6 Conclusion
References
5 Efficient Archiving Method for Handling Preferences in Constrained Multi-objective Evolutionary Optimization
5.1 Introduction
5.2 Problem Statement
5.3 Multi-objective Evolutionary Algorithms
5.3.1 Algorithms of Multi-Objective Evolutionary Optimization
5.3.2 Preference-Based MOEAs
5.3.3 Assessing Performance
5.4 Proposal
5.4.1 Archiving Regions of Interest
5.5 Experimental Step
5.5.1 Problems to Be Solved
5.5.2 Algorithms for Comparison
5.5.3 Parameter Settings
5.6 Results and Discussion
5.6.1 Results on Unconstrained Problems (DTLZ)
5.6.2 Results on Constrained Problems (C-DTLZ)
5.6.3 Results on Real-World Multi-Objective Problems
5.7 Conclusions and Future Work
References
6 Evaluation of Machine Learning Techniques for Malware Detection
6.1 Introduction
6.2 Related Work
6.3 Background
6.3.1 Machine Learning Techniques
6.3.2 Measurement
6.4 Methodology
6.4.1 Data Preprocessing
6.4.2 Data Representation
6.4.3 Model Training/Testing
6.5 Results
6.5.1 Data Sets
6.5.2 Performance
6.6 Conclusions
References
7 Implementation of Reinforcement-Learning Algorithms in Autonomous Robot Navigation
7.1 Introduction
7.2 Systematic Review of the Literature
7.2.1 Heuristic Algorithms
7.2.2 Applications of Reinforcement Learning
7.2.3 Synthesis and Considerations
7.3 Characteristics of Reinforcement Learning Algorithms
7.4 Methodology
7.4.1 Reinforcement Learning Algorithms
7.4.2 System Structure
7.4.3 Experiment Description
7.5 Results
7.6 Conclusions
References
8 Trends on Decision Support Systems: A Bibliometric Review
8.1 Introduction
8.2 Methodology
8.2.1 PRISMA Method
8.2.2 Analysis with VOSviewer
8.3 Results
8.3.1 General Data of the DSS Applied
8.3.2 Authors, Organizations, and Countries that Publish the Most
8.3.3 Most Used Keywords
8.3.4 Most Cited Papers, Journals, Authors, Organizations, and Countries
8.3.5 Evolutions and Trends
8.4 Conclusions
References
9 Use of Special Cases of Ontologies for Big Data Analysis in Decision Making Systems
9.1 Introduction
9.2 Ontological Representation of Knowledge
9.3 Ontologies in Knowledge Organization Systems
9.4 Decision Making Models and External Knowledge
9.5 Semantization of Big Data Technology
9.6 Use of Big Data Analysis in DMS
9.7 Semantic Processing of Metadata for Big Data
9.8 Generation of Ontologies for DM
9.8.1 Wiki Ontologies
9.8.2 Task Thesauri
9.9 Practical Use of Proposed Approach
9.10 Conclusion
References
10 Multicriteria Decision Making Methods—A Review and Case of Study
10.1 Introduction
10.2 Bibliometric Analysis of MCDM
10.2.1 The Timeline of Multicriteria Decision Models
10.2.2 Journals and Authors in MCDM
10.2.3 The Most Cited MCDM Documents and Their Keywords
10.2.4 The Application Areas of MCDM
10.2.5 Institutions and Countries that Publish the Most on MCDM
10.2.6 The Funding Sources in MCDM Research
10.3 Case Study
10.3.1 The Research Problem
10.3.2 Methodology
10.4 Results from Case Study
10.4.1 Obtaining the Subjective Attribute Values
10.4.2 The Final Decision Matrix (FDM)
10.4.3 Normalizing the Alternatives
10.4.4 Obtaining the Weights for Attributes
10.4.5 Weighting the Normalized Matrix
10.4.6 Distance to Ideal Positive and Ideal Negative
10.4.7 Proximity Indexes
10.5 Conclusions
References
Part II Cases of Study
11 Bitcoin Price Forecasting Through Crypto Market Variables: Quantile Regression and Machine Learning Approaches
11.1 Introduction and Related Literature
11.2 Methodology
11.2.1 Quantile Regression Model
11.2.2 Machine Learning Approach
11.3 Data
11.3.1 Determining Data Set for Quantile Regression Model and Machine Learning
11.4 Empirical Results and Discussion
11.4.1 Quantile Regression Results
11.4.2 Machine Learning Results
11.5 Conclusions
References
12 Crops Classification in Small Areas Using Unmanned Aerial Vehicles (UAV) and Deep Learning Pre-trained Models from Detectron2
12.1 Introduction
12.1.1 Technologies 4.0 for Crop Classification
12.1.2 Types of Images Obtained by UAVs
12.1.3 Artificial Intelligence Methods Applied in Agriculture
12.1.4 Methods for Object Detection with Deep Learning
12.1.5 Transfer Learning
12.2 Materials and Method
12.2.1 Study Area
12.2.2 Data Collection
12.2.3 Data Labeling
12.2.4 Data Description
12.2.5 Detectron2
12.2.6 Common Settings for COCO Models
12.2.7 ImageNet Pretrained Models
12.3 Results and Analysis
12.4 Conclusions
12.5 Future Work
References
13 Design and Evaluation of Strategies to Mitigate the Impact of Dengue in Healthcare Institutions Through Dynamic Simulation
13.1 Introduction
13.2 State of the Art
13.3 Methodology
13.3.1 Conceptualization
13.3.2 Formulation
13.4 Results and Discussion
13.4.1 Test
13.4.2 Implementation
13.4.3 Sensitivity Analysis
13.5 Conclusion and Future Directions
References
14 Detecting Arrhythmia Using the IoT Paradigm
14.1 Introduction
14.2 Related Work
14.3 Wearables for CVD Detection
14.4 A Web Application for AF Detection: Architecture and Functionality
14.5 Case Study: People Monitoring for Arrhythmia Detection
14.5.1 Application Features
14.5.2 Parameters and Rules for Arrhythmia Detection
14.5.3 Patient Monitoring
14.6 Conclusion and Future Directions
References
15 Emotion Detection in Learning Environments Using Facial Expressions: A Brief Review
15.1 Introduction
15.2 State of the Art
15.3 API Analysis of Emotion Detection from Facial Expressions
15.4 Case Study: Emotions Recognition in a Learning Environment
15.5 Conclusion and Future Directions
References
16 Face Recognition—Eigenfaces
16.1 Introduction
16.2 Background and Related Works
16.2.1 Eigenfaces
16.2.2 Linear Discriminant Analysis (LDA)
16.3 Datasets
16.4 Architecture, Models and Data Preparation
16.5 Results
16.5.1 Metrics Comparison and Outliers Detection
16.5.2 Eigenfaces
16.5.3 Face Space
16.5.4 Projection of an Image on the Face Space
16.5.5 Face Recognition
16.6 Conclusions
References
17 Genetic Algorithm for the Optimization of the Unequal-Area Facility Layout Problem
17.1 Introduction
17.2 The Unequal-Area Facility Layout Problem
17.3 Genetic Algorithm for the Optimization of the UAFLP
17.3.1 Solution Encoding and Representation
17.3.2 Fitness Function
17.3.3 Selection Operator
17.3.4 Crossover and Mutation Operators
17.3.5 Validation of the GA for Optimizing the UAFLP
17.4 Results of the GA Optimization for the Case of the Garment Industry
17.5 Conclusions
References
18 Microsimulation Calibration Integrating Synthetic Population Generation and Complex Interaction Clusters to Evaluate COVID-19 Spread
18.1 Introduction
18.2 Agent-Based Microsimulation and Its Application to Disease Spread
18.3 Synthetic Population Generation
18.4 Synthetic Population Generation Integrated with Complex Interaction Clusters
18.5 Application of the Proposed Synthetic Population Generation
18.6 Microsimulation of COVID-19 Spread
18.7 Conclusions
References
19 A Decision Support System for Container Handling Operations at a Seaport Terminal with Disturbances: Design and Concepts
19.1 Introduction
19.2 Related Work
19.2.1 Yard Operations
19.2.2 DSS for Container Terminals
19.2.3 Disturbances in Container Terminals
19.3 Disturbances Characterization: Case Study of Chilean Ports
19.4 DSS Proposal and Concepts
19.5 Conclusion and Future Directions
References
توضیحاتی در مورد کتاب به زبان اصلی :
This book presents different techniques and methodologies used to improve the intelligent decision-making process and increase the likelihood of success in companies of different sectors such as Financial Services, Education, Supply Chain, Energy Systems, Health Services, and others.
The book contains and consolidates innovative and high-quality research contributions regarding the implementation of techniques and methodologies applied in different sectors. The scope is to disseminate current trends knowledge in the implementation of artificial intelligence techniques and methodologies in different fields such as: Logistics, Software Development, Big Data, Internet of Things, Simulation, among others. The book contents are useful for Ph.D. researchers, Ph.D. students, master and undergraduate students of different areas such as Industrial Engineering, Computer Science, Information Systems, Data Analytics, and others.