Harmonic Modeling of Voltage Source Converters using Basic Numerical Methods

دانلود کتاب Harmonic Modeling of Voltage Source Converters using Basic Numerical Methods

41000 تومان موجود

کتاب مدل سازی هارمونیک مبدل های منبع ولتاژ با استفاده از روش های عددی پایه نسخه زبان اصلی

دانلود کتاب مدل سازی هارمونیک مبدل های منبع ولتاژ با استفاده از روش های عددی پایه بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد

این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 3


توضیحاتی در مورد کتاب Harmonic Modeling of Voltage Source Converters using Basic Numerical Methods

نام کتاب : Harmonic Modeling of Voltage Source Converters using Basic Numerical Methods
ویرایش : 1
عنوان ترجمه شده به فارسی : مدل سازی هارمونیک مبدل های منبع ولتاژ با استفاده از روش های عددی پایه
سری : IEEE Press
نویسندگان : , , ,
ناشر : Wiley-IEEE Press
سال نشر : 2021
تعداد صفحات : 419
ISBN (شابک) : 1119527139 , 9781119527138
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 11 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Title Page
Copyright
Contents
Preface
Acknowledgments
Symbols
Chapter 1 Fundamental Theory
1.1 Background
1.2 Definition of Harmonics
1.3 Fourier Series
1.3.1 Trigonometric Form
1.3.2 Phasor Form
1.3.3 Exponential Form
1.4 Waveform Symmetry
1.4.1 Even Symmetry
1.4.2 Odd Symmetry
1.4.3 Half‐Wave Symmetry
1.5 Phase Sequence of Harmonics
1.6 Frequency Domain and Harmonic Domain
1.7 Power Definitions
1.7.1 Average Power
1.7.2 Apparent and Reactive Power
1.8 Harmonic Indices
1.8.1 Total Harmonic Distortion (THD)
1.8.2 Total Demand Distortion (TDD)
1.8.3 True Power Factor
1.9 Detrimental Effects of Harmonics
1.9.1 Resonance
1.9.2 Misoperations of Meters and Relays
1.9.3 Harmonics Impact on Motors
1.9.4 Harmonics Impact on Transformers
1.10 Characteristic Harmonic and Non‐Characteristic Harmonic
1.11 Harmonic Current Injection Method
1.12 Steady‐State vs. Transient Response
1.13 Steady‐State Modeling
1.14 Large‐Signal Modeling vs. Small‐Signal Modeling
1.15 Discussion of IEEE Standard (STD) 519
1.16 Supraharmonics
Chapter 2 Power Electronics Basics
2.1 Some Basics
2.2 Semiconductors vs. Wide Bandgap Semiconductors
2.3 Types of Static Switches
2.3.1 Uncontrolled Static Switch
2.3.2 Semi‐Controllable Switches
2.3.3 Controlled Switch
2.4 Combination of Switches
2.5 Classification Based on Commutation Process
2.6 Voltage Source Converter vs. Current Source Converter
Chapter 3 Basic Numerical Iterative Methods
3.1 Definition of Error
3.2 The Gauss–Seidel Method
3.3 Predictor‐Corrector
3.4 Newton\'s Method
3.4.1 Root Finding
3.4.2 Numerical Integration
3.4.3 Power Flow
3.4.4 Harmonic Power Flow
3.4.5 Shooting Method
3.4.6 Advantages of Newton\'s Method
3.4.7 Quasi‐Newton Method
3.4.8 Limitation of Newton\'s Method
3.5 PSO
Chapter 4 Matrix Exponential
4.1 Definition of Matrix Exponential
4.2 Evaluation of Matrix Exponential
4.2.1 Inverse Laplace Transform
4.2.2 Cayley–Hamilton Method
4.2.3 Padé Approximation
4.2.4 Scaling and Squaring
4.3 Krylov Subspace Method
4.4 Krylov Space Method with Restarting
4.5 Application of Augmented Matrix on DC‐DC Converters
4.6 Runge–Kutta Methods
Chapter 5 Modeling of Voltage Source Converters
5.1 Single‐Phase Two‐Level VSCs
5.1.1 Switching Functions
5.1.2 Switched Circuits
5.2 Three‐Phase Two‐Level VSCs
5.3 Three‐Phase Multilevel Voltage Source Converter
5.3.1 Multilevel PWM
5.3.2 Diode Clamped Multilevel VSCs
5.3.3 Flying Capacitor Multilevel VSCs
5.3.4 Cascaded Multi‐Level VSCs
5.3.5 Modular Multi‐Level VSC
Chapter 6 Frequency Coupling Matrices
6.1 Construction of FCM in the Harmonic Domain
6.2 Construction of FCM in the Time Domain
Chapter 7 General Control Approaches of a VSC
7.1 Reference Frame
7.1.1 Stationary‐abc Frame
7.1.2 Stationary‐<3:spiinlinemath 0:display=\"inline\" 0:overflow=\"scroll\" >αβ Frame
7.1.3 Synchronous‐<3:spiinlinemath 0:display=\"inline\" 0:overflow=\"scroll\" >dq Frame
7.1.4 Phase‐Locked Loop
7.2 Control Strategies
7.2.1 Vector‐Current Controller
7.2.2 Direct Power Controller
7.2.3 DC‐bus Voltage Controller
7.2.4 Circulating Current Controller
Chapter 8 Generalized Steady‐State Solution Procedure for Closed‐Loop Converter Systems
8.1 Introduction
8.2 Generalized Procedure
8.2.1 Step 1: Determine How and Where to Break the Loop
8.2.2 Step 2: Check if the Calculation Flows of the Broken System are Feasible
8.2.3 Step 3: Determine What Domain of Each Component in the System Should be Modeled
8.2.4 Step 4: Formulate the Mismatch Equations
8.2.5 Step 5: Iterate to Find the Solution
8.3 Previously Proposed Methods Derived from the Proposed Solution Procedures
8.3.1 Steady‐State Methods Derived from Loop‐Breaking 1 Method
8.3.2 Steady‐State Methods Derived from Loop‐Breaking 2 Method
8.4 The Loop‐Breaking 3 Method
Chapter 9 Loop‐Breaking 1 Method
9.1 A Typical Two‐Level VSC with AC Current Control and DC Voltage Control
9.2 Loop‐Breaking 1 Method for a Two‐Level VSC
9.2.1 Block 1
9.2.2 Current Controller Block
9.2.3 Voltage Controller Block
9.3 Solution Flow Diagram
9.3.1 Initialization
9.3.2 Jacobian Matrix
9.3.3 Number of Modulating Voltage Harmonics to be Included
Chapter 10 Loop‐Breaking 2 Method for Solving a VSC
10.1 Modeling for a Closed‐Loop DC‐DC Converter
10.1.1 Model of the Buck Converter
10.1.2 Constraints of Steady‐State
10.1.3 Switching Time Constraints
10.1.4 Solution Flow Diagram
10.2 Two‐Level VSC Modeling: Open‐Loop Equations
10.2.1 Steady‐State Constraints
10.2.2 Switching Time Constraints
10.2.3 Solution Flow Diagram
10.2.4 Initialization
10.2.5 Jacobian Matrix
10.3 Comparison Between the LB 1 and LB 2 Methods
10.3.1 Case #1: Balanced System
10.3.2 Case #2: Unbalanced System with AC Waveform Exhibiting Half‐Wave Symmetry
10.3.3 Case #3: Unbalanced System, No Waveform Symmetry
10.4 Large‐Signal Modeling for Line‐Commutated Power Converter
10.4.1 Discontinuous Conduction Mode
10.4.2 Continuous Conduction Mode
10.4.3 Steady‐State Constraint Equations
10.4.4 General Comments
Chapter 11 Loop‐Breaking 3 Method
11.1 OpenDSS
11.2 Interfacing OpenDSS with MATLAB
11.3 Interfacing OpenDSS with Harmonic Models of VSCs
Chapter 12 Small‐Signal Harmonic Model of a VSC
12.1 Problem Statement
12.2 Gauss–Seidel LB 3 and Newton LB 3
12.2.1 Current Injection Method
12.2.2 Norton Circuit Method
12.3 Small‐Signal Analysis of DC‐DC Converter
12.4 Small‐Signal Analysis of a Two‐Level VSC
12.4.1 Approach from Section 12.3
12.4.2 Simpler Approach
Chapter 13 Parameter Estimation for a Single VSC
13.1 Background on Parameter Estimation
13.2 Parameter Estimator Based on White‐Box‐and‐Black‐Box Models
13.3 Estimation Validations
13.3.1 Experimental Validation
13.3.2 PSCAD/EMTDC Validation
Chapter 14 Parameter Estimation for Multiple VSCs with Domain Adaptation
14.1 Introduction of Deep Learning
14.2 Domain Adaptation
14.3 Parameter Estimation for Multiple VSCs
14.4 Notations for DA
14.5 Supervised Domain Adaptation for Regression
14.6 Supervised Domain Adaptation for Classification
14.7 Test Setup
14.7.1 Data Generator
14.7.2 Data Preprocessing
14.8 Performance Metrics
14.8.1 R square (Regression)
14.8.2 Mean Absolute Percentage Error, MAPE (Regression)
14.8.3 Accuracy (Classification)
14.8.4 F1 score (Classification)
14.9 Test Results
14.9.1 Classification Task on Multiple VSC
14.9.2 Regression Task on Multiple VSC
14.10 Software for Running the Codes
14.11 Implementation of Domain Adaptation
14.11.1 Data Generation
14.11.2 Regression
14.11.3 Classification Network
References
Index
EULA




پست ها تصادفی