توضیحاتی در مورد کتاب Hyperspectral Satellites and System Design
نام کتاب : Hyperspectral Satellites and System Design
ویرایش : 1
عنوان ترجمه شده به فارسی : ماهواره های فراطیفی و طراحی سیستم
سری :
نویسندگان : Shen-En Qian (Author)
ناشر : CRC Press
سال نشر : 2020
تعداد صفحات : 627
ISBN (شابک) : 9780367217907 , 9780429556708
زبان کتاب :
فرمت کتاب : pdf
حجم کتاب : 40 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
- Introduction of Hyperspectral Satellites
- Spaceborne Spectroscopy and Imaging
- Hyperspectral Imaging Approaches
- Dispersive Elements Based Approach
- Whiskbroom Mode
- Pushbroom Mode
- Spectral Filters Based Approach
- Linear Variable Filters
- On-chip Stepped Fabry-Perot Filters
- Electronically Tunable Filters
- Snapshot Hyperspectral Imagers
- Multi-Aperture Filtered Camera
- Coded Aperture Snapshot Spectral Imager
- Image Mapping Spectrometry
- Snapshot Hyperspectral Imaging Fourier Transform Spectrometer
- On-chip Fabry-Perot Filters
- Hyperspectral Imaging from Aircraft to Spacecraft
- Scientific Rationale for Hyperspectral Remote Sensing
- History of Development of Airborne Hyperspectral Imagers
- First Airborne Hyperspectral Imager – AIS
- Airborne Imaging Spectrometer Development between 80’s and 90’s
- Early Imaging Spectrometer Development in Canada
- Planned NASA Orbiting Imaging Spectrometers in 1990’s
- Two Major Airborne Hyperspectral Imager Developments Since the Beginning
- Difference between Airborne and Spaceborne Hyperspectral Imaging
- AVIRIS and Its Next Generation
- CASI and Its Spectrally and Spatially Extended Siblings
Reference
- Overview of Hyperspectral Sensors on Orbits
- Spaceborne Hyperspectral Sensors at a Glance
- Ultraviolet and Visible Imagers and Spectrographic Imagers (UVISI)
- HyperSpectral Imager (HSI) for the LEWIS mission
- Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua Satellites
- Hyperion onboard EO-1 Mission
- Compact High-Resolution Imaging Spectrometer (CHIRS) on PROBA Satellite
- Medium-Resolution Imaging Spectrometer (MERIS) onboard ESA’s ENVISAT
- Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) for Rosetta, Venus-Express and NASA-Dawn Planetary Missions
- Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)
- Moon Mineralogy Mapper (M3)
- Fourier Transform Hyperspectral Imager (FTHSI) onboard Chinese Environment Protection Satellite HJ-1A
- Hyperspectral Imager (HySI) onboard Indian Mini Satellite-1 (IMS-1)
- Advanced Responsive Tactically Effective Military Imaging Spectrometer (ARTEMIS) onboard TacSat-3
- Hyperspectral Imager for the Coastal Ocean (HICO) onboard the International Space Station
- Visible and Near-infrared Imaging Spectrometer (VNIS) aboard Chang’E 3 Spacecraft
- Ocean and Land Color Imager (OLCI) on Sentinel-3A
- Miniature High-Resolution Imaging Spectrometer on GHGSat-D
- Aalto-1 Spectral Imager (AaSI) on a 3U Nanosatellite
- DLR Earth Sensing Imaging Spectrometer (DESIS) on the International Space Station
- HyperScout Hyperspectral Camera on a 6U Nanosatellite (GomX-4B)
- Advanced Hyperspectral Imager (AHSI) on Chinese Gaofen-5 Satellite
- Italian Hyperspectral Satellite PRISMA
- Hyperspectral Imager Suite (HISUI)
- German Hyperspectral Imager for Environment Mapping and Analysis (EnMap)
- Moons and Jupiter Imaging Spectrometer of ESA’s Jupiter Icy Moons Explorer
Reference
- Overview of Applications of Hyperspectral Satellites in Earth Observations
- Remote Sensing Applications from Multispectral to Hyperspectral Imaging
- Agriculture and Precision Farming
- Crop Stress Mitigation and Site Specific Management
- Nutrient Deficiencies
- Water Content in Crop Canopy and Soil
- Weed Detection and Mapping
- Mapping of Crop Disease and Insect Damage
- Crop Productivity and Yield
- Soil Quality / Erosion
- Agro-environmental Health Monitoring and Forecasting
- Environment and Sustainability
- Wetland Applications
- Environmental Geology
- Land Degradation and Soils Mapping
- Climate Change
- Marine, Coastal and Inland Waters
- Applications in Marine Environments
- Impacts of Land Use and River Runoff
- Eutrophication and Harmful Algae Blooms in Lakes, Rivers and Coastal areas
- Fisheries Applications
- Land-Related Water Applications
- Coastal Zone Environment and Change Detection
- Forestry Applications
- Hyperspectral Forest Products
- Forest Inventory
- Forest Chemistry
- Kyoto Products
- Geology and Mineral Exploration
- Lithologic Mapping
- Geobotanical Mapping
- Defense and Security
- Target Detection
- Spectral Unmixing Based Target Detection
- Stochastic Detection Algorithms
- Terrain Mapping
- Soil Characterization and Disturbance
- Marine Applications
- Near-shore Bathymetry
- Detection of Landmines
- Using VNIR Hyperspectral Imagery
- Using SWIR Hyperspectral Imagery
- Using TIR Hyperspectral Imagery and Combined Sensing
Reference
- Mission Concept and Trade-off Study
- Hyperspectral Satellite configuration
- Hyperspectral Satellite Earth Orbits
- Low Earth orbits
- Sun-synchronous orbits
- Geosynchronous and Highly Elliptical Orbits
- Mission development Phases
- Analysis of Users Needs
- Understanding Users’ Needs
- Environment
- Atmospheric Quality Monitoring
- Fresh Water Quality Monitoring
- Wetlands Habitat Monitoring
- Land Reclamation Monitoring
- Coastal and Inland Waters
- Enhanced Water Quality Monitoring
- Water Clarity
- Monitoring and Assessing Harmful Algal Blooms
- Agriculture
- Annual Crop Inventory Report
- Crop Health Monitoring
- Crop Insurance
- Precision Farming
- Forestry and Mining
- Forest Inventory Management
- Monitoring and Management of Forest Health
- Forest Biomass Estimates
- Environmental Impact Monitoring of Mining Operations
- Lithological and Mineral Mapping
- Defence and Security
- A Hyperspectral Mission Concept Case Study
- Mission Description and Requirements
- Orbit and Coverage Trade-Off
- Orbit Selection
- Number of Satellites
- Orbit Altitude Selection
- Hyperspectral Imaging Technology Trade-Off
- Trade-Off of Data Collection, Compression, Storage, and Downlink
- Mission Concept Overview
- Space Segment
- Ground Segment
- System Calibration
- Concept of Operation
- Payload Concept
- Optical Unit
- Instrument Control and Onboard Data Handling
- Spacecraft Concept
- Selection of Spacecraft Platform
- Spacecraft Platform Structure
- Attitude and Orbit Control Subsystem
- Power Subsystem
- Thermal Control Subsystem
- Telemetry/Telecommand and Data Downlink
- Onboard Controller and Data Handling
- Propulsion
- Launch Options
- Launch Requirements
- 1-Level Launchers
- 2-Level Launchers
Reference
- Optical System and Design
- Optical System Overview
- Instrument Front End Functions
- Input Port Cover
- External Baffles
- Pointing Mirrors and Gimbals
- Spectral Calibration Source
- Radiometric Calibration Source
- Fore-optics
- Telescope
- Slit Assembly
- Internal Baffles
- Spectrometers and Associated Detector Arrays
- VNIR Spectrometer
- VNIR Detector Array(s)
- SWIR Spectrometer
- SWIR Detector Array(s)
- Overlapping spatial and spectral sampling
- Preamplifiers
- Focal Plane Cooling
- Panchromatic Camera
- Panchromatic Linear Detector
- Read out Electronics
- VNIR Array Readout
- SWIR Array Readout
- Panchromatic Readout
- Instrument Structure
- Optical Design Considerations
- Telescope Design Considerations
- Spectrometer Design Considerations
- Telescope Design
- Refracting Telescopes
- Reflecting Telescopes
- Catadioptric Telescopes
- Telescope Design Examples
- Telescope A – A Non-coaxial TMA
- Telescope B – An On-axis TMA
- Telescope C – A Two-Mirror Compact Telescope
- Slit Scan Spectrometers
- Principle of Dispersive Spectrometers
- Grating Spectrometers
- Ebert-Fastie Spectrometer
- Czerny-Turner Spectrometer
- Paschen-Runge Spectrometer and Rowland Spectrometer
- Prism Spectrometers
- Two Typical Spectrometers Used in Spaceborne Hyperspectral Imagers
- Offner Spectrometers
- Dyson Spectrometers
- Comparison Dyson spectrometer vs Offner spectrometer
- Spectrometer Design Examples
- A Dyson Spectrometer for VNIR
- A Dyson Spectrometer for SWIR
- A Grating Spectrometer for VNIR
- A Grating Spectrometer for SWIR
- A Prism Spectrometer for SWIR
- A Dyson Spectrometer for VNIR with a Larger Entrance Pupil
- Comparison of the Design Examples
- Slit Assembly and Beam Splitter
- Distributing Light Using a Slit Assembly
- Distributing Light Using a Beam Splitter
- Depolarizer
- Polarization Sensitivity
- MERIS Type Depolarizer
- Dual Babinet Depolarizer and Variant
- Examples of Depolarizers in Space Missions
- Imaging Spectrometer Optical Design Examples
- Imaging Spectrometer System 1
- System 1 Overview
- System 1 VNIR Grating Spectrometer
- System 1 SWIR Prism Spectrometer
- Imaging Spectrometer System 2
- System 2 Overview
- System 2 VNIR Grating Spectrometer
- System 2 SWIR Prism Spectrometer
- Imaging Spectrometer System 3
- System 3 Overview
- System 3 VNIR Grating Spectrometer
- System 3 SWIR Prism Spectrometer
- Summary of Three Designed Imaging Spectrometer Systems
Reference
- Focal Plane Arrays
- From Instrument Requirements to Focal Plane Array Specification
- CCD FPAs
- CMOS FPAs
- Monolithic CMOS FPAs
- Hybrid CMOS FPAs
- Comparison CCD versus CMOS FPAs
- SWIR FPAs
- HgCdTe FPAs
- InGaAs FPAs
- HgCdTe versus InGaAs for SWIR FPAs
- Hyperspectral FPAs
- Considerations of FPA Selection
- Detector pixel size
- Quantum Efficiency
- Dark Current
- Dark Current Non-Uniformity
- Photo-Response Non-uniformity
- Readout Noise
Reference
- Hyperspectral Imager System Performance Modelling
- Configuration of Exemplary Hyperspectral Imaging Systems
- Telescope
- Spectrometer
- Detector Arrays
- Signal-to-Noise Ratio Simulation
- Signal-to-Noise Ratio Model
- Signal Model
- Noise Model
- Saturation Signal Model
- Assumptions for SNR Simulation
- Input Radiance
- Quantum Efficiency
- Detector Parameters
- Grating Efficiency
- Optical Throughput
- Spectral Dispersion
- 1/f Noise and Electronics Noise
- Ageing Degradation
- Results of SNR Simulation
- Dual Dyson Hyperspectral Imagers
- Dual Offner Hyperspectral Imagers
- Dual Prism Hyperspectral Imagers – Case 1
- Dual Prism Hyperspectral Imagers – Case 2
- Dual Prism Hyperspectral Imagers – Case 3
- Summary of SNR Simulation
- Modelling Modulation Transfer Function (MTF)
- MTF Model
- Assumptions for MTF Modelling
- MTF Results
- Modelling Spectral Response
- Spectral Response Model
- Spectral Response Assumptions
- Spectral Response Results
- Point Spread Function Analysis
- Point Spread Function Model
- Point Spread Function Modeling Results
Reference
- Thermal and Mechanical Design
- Basics of Thermal and Mechanical Design
- Thermal Environment
- Sunlight
- Albedo
- Earth Infrared
- Interplanetary Environments
- Passive Thermal Control
- Surface Finish
- Insulation
- Radiator
- Active Thermal Control
- Heater
- Thermoelectric Cooler
- Stirling Cryocooler and Pulse Tube Cryocooler
- Heat Pipe
- Thermal Design Analysis
- Thermal Design Process Overview
- Hyperspectral Satellites Thermal Design Considerations
- Hyperspectral Sensor Thermal Design Examples
- Hyperion Thermal Design
- CRISM Thermal Design
- EnMAP Thermal Design
- Structural Analysis
- Mechanisms
- Thermal and Structure Design Examples
- VIRTIS for Three Planetary Missions
- VIRTIS Thermal Design
- VIRTIS Structure Design
- PRISMA Hyperspectral Imager
- MAJIS for Exploring Galilean Moons of Jupiter
- MAJIS Thermal Design
- MAJIS Structure Design
Reference
- In-flight Calibration Design
- Importance of Onboard Calibration
- In-flight Calibration for Monitoring Instrument Behavior
- Instrument Calibration and Validation
- Relationship Between Spectral and Radiometric Calibration
- Review of Onboard Calibration Systems
- MERIS
- Hyperion
- MODIS
- SCIAMACHY
- VIRTIS
- PRISMA
- EnMAP
- HISUI
- Onboard Radiometric Calibration Techniques
- Solar-Based Calibration
- Solar Diffuser
- Solar Diffuser with Ratioing Radiometer
- Integrating Sphere with Solar Illumination
- Radiative Source-Based Calibration
- Diffuser Panel with Lamps
- Integrating Sphere with Lamp Illumination
- Light Emitting Diodes and Laser Diodes
- Blackbody
- Vicarious Calibration
- Advances of Vicarious Calibration
- Ground-Based Vicarious Calibration
- Lunar Calibration
- Stable Deserts
- Sun Glint
- High Altitude Clouds
- Molecular Scattering over Oceans
- Offset Correction
- Offset Signal of Detector Arrays
- Frame Method
- Masked Pixel Method
- Summary of Radiometric Calibration Techniques
- Onboard Spectral Calibration Techniques
- Onboard Spectral Calibration Strategy
- Filtered QTH Spectral Line Sources
- Monochromator
- Doped Spectralon Diffuser
- Atmospheric/Solar Lines
- LED Spectral Line Sources
- Etalon
- Summary of Spectral Calibration Techniques
- Concept Design Examples of Onboard Calibration System
- Concept Design 1
- Concept Design 2
- Concept Design 3
Reference
- Instrument Control and Onboard Data Handling Subsystem
- Functions of Instrument Control and Onboard Data Handling Subsystem
- Configuration of Instrument Control and Onboard Data Handling Subsystem
- Processing, Formatting and Control Units (PFCU)
- Architecture of PFCU
- Data Acquisition
- Instrument Data Acquisition
- Ancillary Data
- Virtual Channel Multiplexing
- Onboard Data Compression
- VIRTIS Lossless and Lossy Data Compression
- CRISM Data Editing and Lossless Compression
- M3 Lossless Data Compression
- HISUI Onboard Lossless Data Compression
- EnMap Onboard Data Compression
- Vector Quantization Based Near-Lossless Compression
- CCSDS Recommended Data Compression Standards
- Transmission Chain
- Control and Monitoring
- Timing Generation
- Redundancy and Packaging
- Mass Memory Unit
- Proximity Electronics and Service Module Electronics
- FPAs Proximity Electronics
- Service Module Electronics
- Electrical Interfaces
- Cross-Strapping
- Instrument Interfaces
- MMU Interfaces
- X-/Ka-Band Downlink Interfaces
- Spacecraft Bus Interfaces
Reference
- Ground Segment
- Overview of Ground Segment
- Ground Stations
- Mission Control Centers
- Ground Networks
- Remote Terminals
- Hyperspectral Data Product Level
- Ground Segment Context
- Interface to Space Segment
- Spacecraft Commands
- Imagery and Ancillary Data
- Instrument Calibration Parameters
- Telemetry
- Interface to Calibration Support Data Sources
- Interface to Customers
- Browsing Dialogue
- Data Orders
- Product Orders
- Order Acknowledgment
- Level 1B Products
- Order Results
- Ground Segment Functional Decomposition
- Order Management
- Acquisition Planning
- Command and Control
- Control Communication Link
- Data Communication Link
- Preprocessing
- Archive
- Calibration
- Product Processing
- Cataloguing
- Catalogue
- Operation and Data Flow between Functions
- Order Management to Acquisition Planning
- Feasibility Check
- Feasibility Result
- Collection Order
- Collection Order Result
- Acquisition Planning to Command and Control
- Acquisition Plan
- Acquisition Plan Result
- Resource Constraints
- Predicted Ephemeris
- Command and Control to Control Communication Link
- Contact Setup Dialogue
- Spacecraft Commands
- Instrument Calibration Parameters
- Telemetry
- Acquisition Planning to Data Communication Link
- Reception Setup Dialogue
- Reception Result
- Acquisition Planning to Preprocessing
- Downlink Plan
- Data Communication Link to Preprocessing
- Framed Imagery Data
- Preprocessing to Archive
- Preprocessed Data
- Archive to Cataloguing
- Preprocessed Data
- Calibration Parameters
- Cataloguing to Acquisition Planning
- Archive Report
- Cataloguing to Catalogue
- Catalogue Update
- Archive to Product Processing
- Preprocessed Data
- Calibration Parameters
- Order Management to Product Processing
- Production Order
- Production Order Result
- Product Processing to Calibration
- Level 1A Product
- Calibration to Command and Control
- Spacecraft Calibration Parameters
- Calibration to Archive
- Calibration Parameters
- Operational Scenarios
- Ordering New Data
- Preliminary Events
- Customer Interaction
- Planning, Command and Control
- Space Segment Control
- Data Reception
- Preprocessing, Archiving and Cataloguing
- Completing the Order
- Ordering Level 1B Data Product
- Customer Interaction
- Product Processing
- Completing the Order
- Conducting Onboard Instrument Calibration and Generating Calibration Coefficients
Reference
- On-Ground Calibration and Characterization
- Rationale of On Ground Calibration and Characterization
- Calibration and Characterization Types of Hyperspectral Sensors
- Radiometric
- Spectral
- Geometric
- Spatial Co-registration
- Spatial Resolution and Modulation Transfer Function
- Linearity
- Uniformity
- Rectilinearity
- Polarization Sensitivity
- Stray Light
- Signal-to-Noise Ratio
- Analysis of Spectral and Spatial Error Sources
- Background of Spectral and Spatial Error Sources
- Thermal Drifts
- Mirror Substrates and Prism
- Thin Film Coating Instabilities
- Gratings
- Radiation
- Mirror Substrates
- Prism Glass
- Gratings
- Color Glass Filters and Thin Film Coatings
- Contamination and Atomic Oxygen
- Micrometeorite Damage
- Spectral Calibration Requirement Analysis
- Spectral Linearity
- Temperature Sensitivity
- Simulation of Spectral Calibration
- An Example of Scene-Based Spectral Calibration
- Prelaunch Calibration
- Considerations with respect to Ground-Based Absolute Calibration
- An example - MODIS Prelaunch Calibration
- Absolute and Relative Radiometric Calibration
Reference
- Radiometric Conversion and Data Correction
- Conversion to At-Sensor Radiance and Top-of-Atmosphere Reflectance
- Process of Conversion from Raw Data to Radiance and Reflectance
- Radiometric Response Modeling of a Hyperspectral Sensor
- Conversion to At-sensor Radiance
- MERIS Conversion to At-sensor Radiance
- Hyperion Level 0 and 1 Processing to Generate At-sensor Radiance
- EnMAP Level 0 and 1 Processing to Generate At-sensor Radiance
- Conversion to Top-of-Atmosphere Reflectance
- Smile Detection and Correction
- Spectral Distortion - Smile
- Smile Correction Using Atmospheric Absorption Feature Matching
- Keystone Detection and Correction
- Spatial Distortion - Keystone
- Measuring Keystone Using Interband Correlation of Spectral Features
- De-striping and Noise Reduction
- De-striping
- Random Noise Reduction
- A Case Study of Data Correction and Its Effectiveness
- Test Data Set
- Data Processing Procedure
- Evaluation Results of Statistical Measures
- Evaluation Results Using a Target Detection Application
Reference
- Atmospheric Correction
- Atmospheric Effects on Hyperspectral Data
- Statistics-Based Atmospheric Correction Approaches
- Empirical Line Method
- Internal Average Relative Reflectance
- Flat Field Correction
- Cloud Shadow Method
- Dense Dark Vegetation Algorithm
- Radiative Transfer Modeling for Physics-Based Atmospheric Correction
- Radiative Transfer Modeling Based Methods for Land Scenes
- Atmosphere Removal Algorithm (ATREM)
- Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH)
- High-accuracy Atmospheric Correction for Hyperspectral Data (HATCH)
- Atmosphere Correction Now (ACORN)
- 5D LUT Approach in Imaging Spectrometer Data Analysis System (ISDAS)
- Atmospheric and Topographic Correction (ATCOR)
- Radiative Transfer Modeling Based Methods for Water Scenes
- Atmospheric Correction over Optically-Complex Water Scene
- Black-Pixel Assumption NIR Algorithm
- NIR Similarity Spectrum Algorithm
- NIR-SWIR Algorithm with Turbid Water Index
- Self-Contained Atmospheric Parameters Estimation
- Modified NIR Black-Pixel Method
- Direct Inversion Approach Using Neural Network
Reference