توضیحاتی در مورد کتاب Industrial Chemical Separation: Historical Perspective, Fundamentals, and Engineering Practice
نام کتاب : Industrial Chemical Separation: Historical Perspective, Fundamentals, and Engineering Practice
عنوان ترجمه شده به فارسی : جداسازی شیمیایی صنعتی: دیدگاه تاریخی، مبانی و عملکرد مهندسی
سری : De Gruyter STEM
نویسندگان : Frank T.C., Holden B.S.
ناشر : Walter de Gruyter
سال نشر : 2023
تعداد صفحات : 502
ISBN (شابک) : 9783110695021
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 5 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Half Title
Also of interest
Industrial Chemical Separation: Historical Perspective, Fundamentals, and Engineering Practice
Copyright
About the authors
Acknowledgments
Preface
Contents
List of Symbols
Latin Alphabet
Greek Alphabet
Part I: What It Is and Why It Matters
1. Importance and Overall Description
1.1 Functional Design
1.2 General Characteristics
References
2. Scale of Operation
2.1 Commodity Chemical Separations
2.2 Fine Chemical Separations
2.3 Mini- and Micro-Separations
3. Part of a Valued Tradition
3.1 Historical Perspective
3.2 Pioneers
3.3 The Engineering Method
References
4. Addressing Universal and Changing Needs
References
Bibliography
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Part II: Design Fundamentals
5. Thermodynamics: Characterizing Dynamic Equilibrium
5.1 Ideal and Real Mixtures
5.2 Dynamic Equilibrium and Gibbs Free Energy
5.3 Chemical Potential and Mass Transfer
5.4 Specific Molecular Interactions
5.4.1 Non-ideal intermolecular interactions
5.4.2 Classification of chemical mixtures
5.4.3 Activity coefficients
5.4.4 Henry’s law
5.4.5 Equations of state
5.4.6 COSMOtherm
5.5 Key Expressions of Phase Equilibria
5.5.1 Vapor-liquid equilibria
5.5.2 Liquid-liquid equilibria
5.5.3 Solid-liquid equilibria
5.5.4 Adsorption isotherms
5.6 Phase Diagrams: Equilibrium Curves, Azeotropes, and Eutectics
5.6.1 Equilibrium curves
5.6.2 Homogeneous azeotropes
5.6.3 Heterogeneous azeotropes
5.6.4 Liquid-liquid phase behavior
5.6.5 Solid-liquid eutectic behavior
5.7 Solvent Selection Methods
5.8 Energy Consumption and Energy Efficiency
References
6. Mass Transport: Characterizing Mass Transfer Drivers and Resistances
6.1 Driving Forces and Key Descriptors
6.1.1 Separations driven by deviation from equilibrium
6.1.2 Drivers for membrane-based separations
6.1.3 Partition ratio, separation factor, and transfer factor
6.1.4 Assessing rate limitations and thermodynamic consistency
6.2 Fluid Flow and Mixing: Imagine the Best Flow Path Through the Equipment
6.2.1 Ideal fluid flow
6.2.2 Mixing design
6.3 Interfacial Area
6.4 Residence Time Effects
6.5 The Material Balance: Keeping Track of All Components
6.5.1 Material balance split and separation power
6.5.2 The impact of trace impurities: beware or be sorry
6.6 Theoretical Stage Models
6.6.1 Theoretical stage relationships
6.6.2 Stage efficiency
6.7 Rate-Based Models
6.7.1 Mass transfer units and mass transfer coefficients
6.7.2 Phenomenological and other models
6.7.3 Adsorption dynamics: breakthrough curves
6.7.4 Crystallization rates: nucleation, growth, and the population balance
6.7.5 Membrane permeance and separation factor
References
Bibliography
Chapter 5
Chapter 6
Part III: Engineering Practice
7. Distillation: Rectification, Stripping, and Absorption – The Workhorse Methods
7.1 General Features and Utility
7.2 Process Types
7.3 Distillation Operations and Design Considerations
7.3.1 Single-stage distillation: Rayleigh distillation and continuous evaporation
7.3.2 Batch distillation with reflux
7.3.3 Continuous stripping and absorption
7.3.4 Continuous fractional distillation
7.3.5 Short-cut calculations
7.3.6 Computer calculations
7.3.7 Reactive absorption for gas scrubbing
7.4 Equipment Design and Rating Methods
7.4.1 Column design
7.4.2 Packings
7.4.3 Trays
7.5 Process Control Considerations
7.6 Energy Utilization
References
8. Enhanced Distillation: Taking Advantage of Specific Molecular Interactions
8.1 Heterogeneous Azeotropic Distillation and Steam Distillation
8.2 Extractive Distillation
8.3 Pressure Change Distillation
References
9. Liquid-Liquid Extraction: Employing Molecular Interactions Alone
References
10. Adsorption-Based Processes: Adding an Active Solid Surface
10.1 Adsorbent Materials
10.2 General Process Features
10.3 Continuous Versus Batch Operation
10.4 Fixed-Bed Design Methods
10.4.1 General approach to design
10.4.2 Adsorber dimensions, internals, and piping diagram
10.5 Temperature Swing Adsorption
10.6 Pressure Swing Adsorption
10.7 True Countercurrent Moving-Bed Adsorption
10.8 Simulated Moving-Bed Chromatography
References
11. Crystallization from Solution and from the Melt: Taking Advantage of Eutectic Behavior
11.1 General Characteristics and Approach to Design
11.2 Types of Processes and Equipment
11.3 Process Analytical Technology
11.4 Batch Crystallization from Solution
11.5 Continuous Crystallization from Solution
11.6 Crystallization from the Melt: Eliminating the Addition of Solvent
References
12. Membrane-Based Separations: Adding a Semipermeable Barrier Between Phases
12.1 General Features
12.2 Water Treatment
12.3 Organic Solvent Nanofiltration
12.4 Gas Separations
12.5 Pervaporation
References
13. Specialized Separations
13.1 Bioseparations
13.2 Bio-designed Separations
13.3 Polarity Switching Separations
13.4 Separations Employing a Supercritical Fluid
13.5 Chiral Separations
13.6 Environmental Protection
References
14. Inventive Engineering: Process Simplification, Intensification, and Hybrid Processing
References
Bibliography
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Index